retroforth/literate/RetroForth.md
crc e134147f17 use ~~~ instead of ````
FossilOrigin-Name: 4d83846aa3c434a2fc8b296dbfd4ede49df11b5cae85811daf759a0e7d9a9e9f
2017-10-20 01:10:38 +00:00

33 KiB
Raw Blame History

RETRO 12

Background

Retro is a dialect of Forth. It builds on the barebones Rx core, providing a much more flexible and useful language.

Retro has a history going back many years. It began as a 16-bit assembly implementation for x86 hardware, evolved into a 32-bit system with cmForth and ColorForth influences, and eventually started supporting mainstream OSes. Later it was rewritten for a small, portable virtual machine. Over the years the language implementation has varied substantially. This is the twelfth generation of Retro. It now targets a new virtual machine (called Nga), and is built over a barebones Forth kernel (called Rx).

Namespaces

Various past releases have had different methods of dealing with the dictionary. Retro 12 has a single global dictionary, with a convention of using a namespace prefix for grouping related words.

namespace words related to
ASCII ASCII Constants
c characters
compile compiler functions
d dictionary headers
err error handlers
n numbers
s strings
v variables

Prefixes

Prefixes are an integral part of Retro. These are single characters added to the start of a word which indicate to Retro how it should execute the word. These are processed at the start of interpreting a token.

prefix used for
: starting a definition
& obtaining pointers
( stack comments
` inlining bytecodes
' strings
# numbers
$ characters
@ variable get
! variable set

Naming and Style Conventions

  • Names should start with their namespace (if appropriate)
  • Word names should be lowercase
  • Variable names should be Title case
  • Constants should be UPPERCASE
  • Names may not start with a prefix character
  • Names returning a flag should end with a ?
  • Words with an effect on the stack should have a stack comment

Code Begins

Memory Map

This assumes that the VM defines an image as being 524287 cells.

range contains
0 - 1024 rx kernel
1025 - 1535 token input buffer
1536 + start of heap space
522751 temporary strings (12 * 128)
524287 end of memory

I provide a word, EOM, which returns the last addressable location. This will be used by the words in the s: namespace to allocate the temporary string buffers at the end of memory.

:EOM  (-n)  #-3 fetch ;

... stack comments ...

(takes-returns)

I use a single character for each input and output item. These will often (though perhaps not always) be:

n, m, x, y number a, p pointer q quotation (pointer) d dictionary header (pointer) s string c character (ASCII)

I next define a few words in the d: namespace to make it easier to operate on the most recent header in the dictionary. These return pointers to specific fields in the header.

:d:last        (-d) &Dictionary fetch ;
:d:last<xt>    (-a) d:last d:xt fetch ;
:d:last<class> (-a) d:last d:class fetch ;
:d:last<name>  (-s) d:last d:name ;

... reclass ...

This is used to change the class from class:word to class:macro. Doing this is ugly and not very readable. I implement reclass to change the class of the most recent word.

:reclass    (a-) d:last d:class store ;

With this I can then define immediate (for state-smart words) and data to tag data words.

:immediate  (-)  &class:macro reclass ;
:data       (-)  &class:data reclass ;
:depth  (-n) #-1 fetch ;
:prefix:@  (s-n) d:lookup d:xt fetch class:data &fetch class:word ; immediate
:prefix:!  (s-n) d:lookup d:xt fetch class:data &store class:word ; immediate

I have a compile namespace for some low level words that compile Nga bytecode.

:compile:lit  (a-) #1 , , ;
:compile:jump (a-) #1793 , , ;
:compile:call (a-) #2049 , , ;
:compile:ret  (-)  #10 , ;

The compiler state is stored in a value named Compiler. I have an accessor word that aids in readability.

:compiling?  (-f)  @Compiler ;

It's sometimes useful to inline values directly. I use a backtick prefix for this.

:prefix:`  (s-)
  compiling? [ s:to-number , ] [ drop ] choose ; immediate

It's traditional to have a word named here which returns the next free address in memory.

:here  (-a) @Heap ;

The next few words aren't useful until the s: namespace is defined. With strings and the ' prefix they allow creation of variables and constants.

To create a Use a form like
Variable 'Base var
Variable, with initial value #10 'Base var<n>
Constant #-1 'TRUE const

The first word creates a new header pointing to here. This is used to build other data structures without invoking the : compiler.

:d:create (s-)
  (s-) &class:data #0 d:add-header
  here d:last d:xt store ;

And then the others are trivial.

:var    (s-)  d:create #0 , ;
:var<n> (ns-) d:create , ;
:const  (ns-) d:create d:last d:xt store ;

The const word bears a tiny bit of explaination. It takes advantage of Retro's word class model. It creates a header, with a class of class:data, then sets the word pointer to the value. Since the data class either leaves the word pointer on the stack or compiles it as a literal into a definition, this allows constants to exist as just a header with no special runtime code.

The core Rx language provides a few basic stack shuffling words: push, pop, drop, swap, and dup. There are quite a few more that are useful. Some of these are provided here.

:tuck      (xy-yxy)   dup push swap pop ;
:over      (xy-xyx)   push dup pop swap ;
:dup-pair  (xy-xyxy)  over over ;
:nip       (xy-y)     swap drop ;
:drop-pair (nn-)      drop drop ;
:?dup      (n-nn||n-n) dup 0; ;

Retro makes use of anonymous functions called quotations for much of the execution flow and stack control. The words that operate on these quotations are called combinators.

dip executes a quotation after moving a value off the stack. The value is restored after execution completes. These are equivilent:

#10 #12 [ #3 - ] dip
#10 #12 push #3 - pop
:dip  (nq-n)  swap push call pop ;

sip is similar to dip, but leaves a copy of the value on the stack while the quotation is executed. These are equivilent:

#10 [ #3 * ] sip
#10 dup push #3 * pop
:sip  (nq-n)  push dup pop swap &call dip ;

Apply each quote to a copy of x

:bi  (xqq-)  &sip dip call ;

Apply q1 to x and q2 to y

:bi*  (xyqq-) &dip dip call ;

Apply q to x and y

:bi@  (xyq-)  dup bi* ;

Apply each quote to a copy of x

:tri  (xqqq-)  [ &sip dip sip ] dip call ;

Apply q1 to x, q2 to y, and q3 to z

:tri*  (xyzqqq-)  [ [ swap &dip dip ] dip dip ] dip call ;

Apply q to x, y, and z

:tri@ dup dup tri* ;

Flow

Execute quote until quote returns a flag of 0.

:while  (q-)
  [ repeat dup dip swap 0; drop again ] call drop ;

Execute quote until quote returns a flag of -1.

:until  (q-)
  [ repeat dup dip swap #-1 xor 0; drop again ] call drop ;

The times combinator runs a quote (n) times.

:times  (q-)
  swap [ repeat 0; #1 - push &call sip pop again ] call drop ;

Taking a break from combinators for a bit, I turn to some words for comparing things. First, constants for TRUE and FALSE.

:TRUE  (-n) #-1 ;
:FALSE (-n)  #0 ;

The basic Rx kernel doesn't provide two useful forms which I'll provide here.

:lteq?  (nn-f)  dup-pair eq? [ lt? ] dip or ;
:gteq?  (nn-f)  dup-pair eq? [ gt? ] dip or ;

And then some numeric comparators.

:n:MAX        (-n)    #2147483647 ;
:n:MIN        (-n)    #2147483648 ;
:n:zero?      (n-f)   #0 eq? ;
:n:-zero?     (n-f)   #0 -eq? ;
:n:negative?  (n-f)   #0 lt? ;
:n:positive?  (n-f)   #-1 gt? ;
:n:strictly-positive?  (n-f)  #0 gt? ;
:n:even?      (n-f)  #2 /mod drop n:zero? ;
:n:odd?       (n-f)  #2 /mod drop n:-zero? ;

And now back to combinators.

case is a conditional combinator. It's actually pretty useful. What it does is compare a value on the stack to a specific value. If the values are identical, it discards the value and calls a quote before exiting the word. Otherwise it leaves the stack alone and allows execution to continue.

Example:

:c:vowel?
  $a [ TRUE ] case
  $e [ TRUE ] case
  $i [ TRUE ] case
  $o [ TRUE ] case
  $u [ TRUE ] case
  drop FALSE ;
:case
  [ over eq? ] dip swap
  [ nip call TRUE ] [ drop FALSE ] choose 0; pop drop drop ;
:s:case
  [ over s:eq? ] dip swap
  [ nip call TRUE ] [ drop FALSE ] choose 0; pop drop drop ;

Two more stack shufflers.

rot rotates the top three values.

:rot  (abc-bca)   [ swap ] dip swap ;

Next is tors. Short for top of return stack, this returns the top item on the address stack. As an analog to traditional Forth, this is equivilent to R@.

:tors (-n)  pop pop dup push swap push ;

The core Rx language provides addition, subtraction, multiplication, and a combined division/remainder. Retro expands on this.

:/         (nq-d)  /mod swap drop ;
:mod       (nq-r)  /mod drop ;
:not       (n-n)   #-1 xor ;
:n:pow     (bp-n)  #1 swap [ over * ] times nip ;
:n:negate  (n-n)   #-1 * ;
:n:square  (n-n)   dup * ;
:n:sqrt    (n-n)   #1 [ repeat dup-pair / over - #2 / 0; + again ] call nip ;
:n:min     (nn-n)  dup-pair lt? [ drop ] [ nip ] choose ;
:n:max     (nn-n)  dup-pair gt? [ drop ] [ nip ] choose ;
:n:abs     (n-n)   dup n:negate n:max ;
:n:limit   (nlu-n) swap push n:min pop n:max ;
:n:inc     (n-n)   #1 + ;
:n:dec     (n-n)   #1 - ;
:n:between? (nul-) rot [ rot rot n:limit ] sip eq? ;

Some of the above, like n:inc, are useful with variables. But it's messy to execute sequences like:

@foo n:inc !foo

The v: namespace provides words which simplify the overall handling of variables. With this, the above can become simply:

&foo v:inc

:v:inc-by  (na-)   [ fetch + ] sip store ;
:v:dec-by  (na-)   [ fetch swap - ] sip store ;
:v:inc     (n-n)   #1 swap v:inc-by ;
:v:dec     (n-n)   #1 swap v:dec-by ;
:v:limit   (alu-)  push push dup fetch pop pop n:limit swap store ;
:v:on      (a-)    TRUE swap store ;
:v:off     (a-)    FALSE swap store ;
:v:preserve (aq-)  swap dup fetch [ [ call ] dip ] dip swap store ;
:allot     (n-)    &Heap v:inc-by ;

If you need to update a stored variable there are two typical forms:

#1 'Next var<n>
@Next #10 * !Next

Or:

#1 'Next var<n>
&Next [ fetch #10 * ] sip store

The v:update-using replaces this with:

#1 'Next var<n>
&Next [ #10 * ] v:update-using

It takes care of preserving the variable address, fetching the stored value, and updating with the resulting value.

:v:update-using (aq-) swap [ fetch swap call ] sip store ;

I have a simple word copy which copies memory to another location.

:copy   (aan-) [ &fetch-next dip store-next ] times drop drop ;

Now for something tricky: a system for lexical scoping.

The dictionary is a simple linked list. Retro allows for some control over what is visible using the {{, ---reveal---, and }} words.

As an example:

{{
  :increment dup fetch n:inc swap store ;
  :Value `0 ;
---reveal---
  :next-number @Value &Value increment ;
}}

Only the next-number function will remain visible once }} is executed.

:ScopeList `0 `0 ;
:{{            (-)
  d:last dup &ScopeList store-next store ;
:---reveal---  (-)
   d:last &ScopeList n:inc store ;
:}}            (-)
  &ScopeList fetch-next swap fetch eq?
  [ @ScopeList !Dictionary ]
  [ @ScopeList [ &Dictionary repeat fetch dup fetch &ScopeList n:inc fetch -eq? 0; drop again ] call store ] choose ;

--> The scoping code is a bit messy. I'd like to simplify it.

A buffer is a linear memory buffer. Retro provides a buffer: namespace for working with them.

{{
  :Buffer `0 ; data
  :Ptr    `0 ; data
  :terminate (-) #0 @Ptr store ;
---reveal---
  :buffer:start  (-a) @Buffer ;
  :buffer:end    (-a) @Ptr ;
  :buffer:add    (c-) buffer:end store &Ptr v:inc terminate ;
  :buffer:get    (-c) &Ptr v:dec buffer:end fetch terminate ;
  :buffer:empty  (-)  buffer:start !Ptr terminate ;
  :buffer:size   (-n) buffer:end buffer:start - ;
  :buffer:set    (a-) !Buffer buffer:empty ;
  :buffer:preserve (q-)
    @Buffer @Ptr [ [ call ] dip !Buffer ] dip !Ptr ;
}}

And now for strings. Traditional Forth systems have a messy mix of strings. You have counted strings, address/length pairs, and sometimes other forms.

Retro uses zero terminated strings. I know that counted strings are better in many ways, but I've used these for years and they are a workable approach.

Temporary strings are allocated in a circular pool (at STRINGS).

:TempStrings ;   &class:data reclass  #12 !TempStrings
:TempStringMax ; &class:data reclass #512 !TempStringMax
:STRINGS   EOM @TempStrings @TempStringMax * - ;

{{
  :MAX-LENGTH #512 ;
  :s:Current `0 ; data

  :s:pointer (-p)  @s:Current MAX-LENGTH * STRINGS + ;
  :s:next    (-)
    &s:Current v:inc
    @s:Current @TempStrings eq? [ #0 !s:Current ] if ;
---reveal---
  :s:temp (s-s) dup s:length n:inc s:pointer swap copy s:pointer s:next ;
  :s:empty (-s) s:pointer s:next ;
}}

Permanent strings are compiled into memory. To skip over them a helper function is used. When compiled into a definition this will look like:

lit &s:skip
call
:stringbegins
.data 98
.data 99
.data 100
.data 0
lit &stringbegins

The s:skip adjusts the Nga instruction pointer to skip to the code following the stored string.

:s:skip (-) pop [ fetch-next n:-zero? ] while n:dec push ;
:s:keep (s-s) compiling? [ &s:skip class:word ] if here [ s, ] dip class:data ;

And now a quick ' prefix. (This will be replaced later). What this does is either move the string token to the temporary buffer or compile it into the current definition.

This doesn't support spaces. I use underscores instead. E.g.,

'Hello_World!

Later in the code I'll add a better implementation which can handle conversion of _ into spaces.

:prefix:' compiling? [ s:keep ] [ s:temp ] choose ; immediate

s:chop removes the last character from a string.

:s:chop (s-s) s:temp dup s:length over + n:dec #0 swap store ;

s:reverse reverses the order of a string. E.g.,

'hello'  ->  'olleh'
:s:reverse (s-s)
  [ dup s:temp buffer:set &s:length [ dup s:length + n:dec ] bi swap
    [ dup fetch buffer:add n:dec ] times drop buffer:start s:temp ]
  buffer:preserve ;

Trimming removes leading (s:trim-left) or trailing (s:trim-right) spaces from a string. s:trim removes both leading and trailing spaces.

:s:trim-left (s-s) s:temp [ fetch-next [ #32 eq? ] [ n:zero? ] bi and ] while n:dec ;
:s:trim-right (s-s) s:temp s:reverse s:trim-left s:reverse ;
:s:trim (s-s) s:trim-right s:trim-left ;

s:prepend and s:append for concatenating strings together.

:s:prepend (ss-s)
  s:temp [ dup s:length + [ dup s:length n:inc ] dip swap copy ] sip ;
:s:append (ss-s) swap s:prepend ;

s:for-each executes a quote once for each cell in string. It is a key part of building the other high-level string operations.

:s:for-each (sq-)
  [ repeat
      over fetch 0; drop
      dup-pair
      [ [ [ fetch ] dip call ] dip ] dip
      [ n:inc ] dip
    again
  ] call drop-pair ;

s:filter returns a new string, consisting of the characters from another string that are filtered by a quotation.

'This_is_a_test [ c:-vowel? ] s:filter
:s:filter (sq-s)
  [ s:empty buffer:set swap
    [ dup-pair swap call
        [ buffer:add ]
        [ drop       ] choose
    ] s:for-each drop buffer:start
  ] buffer:preserve ;

s:map Return a new string resulting from applying a quotation to each character in a source string.

'This_is_a_test [ $_ [ ASCII:SPACE ] case ] s:map
:s:map (sq-s)
  [ s:empty buffer:set swap
    [ over call buffer:add ]
    s:for-each drop buffer:start
  ] buffer:preserve ;

s:substr returns a subset of a string. Provide it with a string, a starting offset, and a length.

:s:substr (sfl-s)
  [ + s:empty ] dip [ over [ copy ] dip ] sip
  over [ + #0 swap store ] dip ;

s:right and s:left are similar to s:substr, but operate from fixed ends of the string.

:s:right (sn-s) over s:length over - swap s:substr ;
:s:left  (sn-s) #0 swap s:substr ;

Hash (using DJB2)

:s:hash (s-n) #5381 swap [ swap #33 * + ] s:for-each ;

Copy a string, including the terminator.

:s:copy (ss-) over s:length n:inc copy ;
:s:DIGITS          (-s)  '0123456789 ;
:s:ASCII-LOWERCASE (-s)  'abcdefghijklmnopqrstuvwxyz ;
:s:ASCII-UPPERCASE (-s)  'ABCDEFGHIJKLMNOPQRSTUVWXYZ ;
:s:ASCII-LETTERS   (-s)  'abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ ;
:s:PUNCTUATION     (-s)  '_!"#$%&'()*+,-./:;<=>?@[\]^`{|}~ $_ over store ;
's:WHITESPACE d:create  #32, #9 , #10 , #13 , #0 ,

Not all characters can be obtained via the $ prefix. ASCII has many characters that aren't really intended to be printable. Retro has an ASCII namespace providing symbolic names for these.

Note that ASCII:HT is the horizontal tab character.

:ASCII:NUL     (-c)  #0 ;    :ASCII:SOH     (-c)  #1 ;
:ASCII:STX     (-c)  #2 ;    :ASCII:ETX     (-c)  #3 ;
:ASCII:EOT     (-c)  #4 ;    :ASCII:ENQ     (-c)  #5 ;
:ASCII:ACK     (-c)  #6 ;    :ASCII:BEL     (-c)  #7 ;
:ASCII:BS      (-c)  #8 ;    :ASCII:HT      (-c)  #9 ;
:ASCII:LF      (-c)  #10 ;   :ASCII:VT      (-c)  #11 ;
:ASCII:FF      (-c)  #12 ;   :ASCII:CR      (-c)  #13 ;
:ASCII:SO      (-c)  #14 ;   :ASCII:SI      (-c)  #15 ;
:ASCII:DLE     (-c)  #16 ;   :ASCII:DC1     (-c)  #17 ;
:ASCII:DC2     (-c)  #18 ;   :ASCII:DC3     (-c)  #19 ;
:ASCII:DC4     (-c)  #20 ;   :ASCII:NAK     (-c)  #21 ;
:ASCII:SYN     (-c)  #22 ;   :ASCII:ETB     (-c)  #23 ;
:ASCII:CAN     (-c)  #24 ;   :ASCII:EM      (-c)  #25 ;
:ASCII:SUB     (-c)  #26 ;   :ASCII:ESC     (-c)  #27 ;
:ASCII:FS      (-c)  #28 ;   :ASCII:GS      (-c)  #29 ;
:ASCII:RS      (-c)  #30 ;   :ASCII:US      (-c)  #31 ;
:ASCII:SPACE   (-c)  #32 ;   :ASCII:DEL     (-c)  #127 ;

These words operate on character values. Retro currently deals with ASCII, though cells are 32 bits in length, so Unicode values can be stored.

First are a bunch of words to help identify character values.

:c:letter?      (c-f) $A $z n:between? ;
:c:lowercase?   (c-f) $a $z n:between? ;
:c:uppercase?   (c-f) $A $Z n:between? ;
:c:digit?       (c-f) $0 $9 n:between? ;
:c:whitespace?  (c-f)
  ASCII:SPACE [ TRUE ] case
  ASCII:HT    [ TRUE ] case
  ASCII:LF    [ TRUE ] case
  ASCII:CR    [ TRUE ] case
  drop FALSE ;
:c:visible?     (c-f) #31 #126 n:between? ;
:c:vowel?       (c-f)
  $a [ TRUE ] case
  $e [ TRUE ] case
  $i [ TRUE ] case
  $o [ TRUE ] case
  $u [ TRUE ] case
  $A [ TRUE ] case
  $E [ TRUE ] case
  $I [ TRUE ] case
  $O [ TRUE ] case
  $U [ TRUE ] case
  drop FALSE ;
:c:consonant?   (c-f)
  dup c:letter? [ c:vowel? not ] [ drop FALSE ] choose ;

And the inverse forms. (These are included for readability and orthiginal completion).

:c:-lowercase?  (c-f) c:lowercase? not ;
:c:-uppercase?  (c-f) c:uppercase? not ;
:c:-digit?      (c-f) c:digit? not ;
:c:-whitespace? (c-f) c:whitespace? not ;
:c:-visible?    (c-f) c:visible? not ;
:c:-vowel?      (c-f)  c:vowel? not ;
:c:-consonant?  (c-f)  c:consonant? not ;

The next few words perform simple transformations.

:c:to-upper     (c-c) dup c:lowercase? 0; drop ASCII:SPACE - ;
:c:to-lower     (c-c) dup c:uppercase? 0; drop ASCII:SPACE + ;
:c:toggle-case  (c-c) dup c:lowercase? [ c:to-upper ] [ c:to-lower ] choose ;
:c:to-string    (c-s) '. s:temp [ store ] sip ;

With the character transformations a few more string words are possible.

:s:to-upper  (s-s)  [ c:to-upper ] s:map ;
:s:to-lower  (s-s)  [ c:to-lower ] s:map ;

Convert a decimal (base 10) number to a string.

{{
  :Value `0 ;
  :correct (c-c)
    dup $0 lt? [ $0 over - #2 * + ] if ; 
---reveal---
  :n:to-string  (n-s)
    [ here buffer:set dup !Value n:abs
      [ #10 /mod swap $0 + correct buffer:add dup n:-zero? ] while drop
      @Value n:negative? [ $- buffer:add ] if
      buffer:start s:reverse s:temp ] buffer:preserve ;
}}

Now replace the old prefix:' with this one that can optionally turn underscores into spaces.

TRUE 'RewriteUnderscores var<n>

{{
  :sub (c-c) $_ [ ASCII:SPACE ] case ;
  :rewrite (s-s)
    @RewriteUnderscores [ [ sub ] s:map ] if &prefix:' call ;
---reveal---
  :prefix:' rewrite ; immediate
}}

Building on s:for-each, I am able to implement s:index-of, which finds the first instance of a character in a string.

:s:index-of (sc-n)
  swap [ repeat
           fetch-next 0; swap
           [ over -eq? ] dip
           swap 0; drop
         again
       ] sip
  [ - n:dec nip ] sip
  s:length over eq? [ drop #-1 ] if ;

s:contains-char? returns a flag indicating whether or not a given character is in a string.

:s:contains-char? (sc-f) s:index-of #-1 -eq? ;

s:contains-string? returns a flag indicating whether or not a given substring is in a string.

{{
  'Src var
  'Tar var
  'Pad var
  'I   var
  'F   var

  :terminate (-)
    #0 @Pad @Tar s:length + store ;

  :extract (-)
    @Src @I + @Pad @Tar s:length copy ;

  :compare (-)
    @Pad @Tar s:eq? @F or !F ;

  :next (-)
    &I v:inc ;
---reveal---
  :s:contains-string? (ss-f)
    !Tar !Src s:empty !Pad #0 !I #0 !F
    @Src s:length
    [ extract terminate compare next ] times
    @F ;
}}

The s:split splits a string on the first instance of a given character. Results are undefined if the character can not be located.

:s:split (sc-ss)
  dup-pair s:index-of nip dup-pair s:left [ + ] dip ;

Ok, This is a bit of a hack, but very useful at times.

Assume you have a bunch of values:

#3 #1 #2 #5

And you want to reorder them into something new:

#1 #3 #5 #5 #2 #1

Rather than using a lot of shufflers, reorder simplfies this into:

#3 #1 #2 #5
'abcd  'baddcb reorder
{{
  'Values var #27 allot
  :from s:length dup [ [ &Values + store ] sip n:dec ] times drop ;
  :to dup s:length [ fetch-next $a -  n:inc &Values + fetch swap ] times drop ;
---reveal---
  :reorder (...ss-?) [ from ] dip to ;
}}

I need to describe these and provide some examples of where they are useful.

:curry (vp-p) here [ swap compile:lit compile:call compile:ret ] dip ;
:does  (q-)   d:last<xt> swap curry d:last d:xt store &class:word reclass ;

d:for-each is a combinator which runs a quote once for each header in the dictionary. A pointer to each header will be passed to the quote as it is run.

:d:for-each (q-)
  &Dictionary [ repeat fetch 0;
 dup-pair [ [ swap call ] dip ] dip again ] call drop ;

Use s:with-format to construct a string from multiple items. This can be illustrated with:

#4 #6 #10  '%n-%n=%n\n  s:with-format

The format language is simple:

| \n | Replace with a LF | | \t | Replace with a TAB | [ \ | Replace with a single \ | | %c | Replace with a character on the stack | | %s | Replace with a string on the stack | | %n | Replace with the next number on the stack |

{{
  :char (c-)
    $n [ ASCII:LF buffer:add ] case
    $t [ ASCII:HT buffer:add ] case
    buffer:add ;

  :string (a-a)
    repeat fetch-next 0; buffer:add again ;

  :type (aac-)
    $c [ swap buffer:add              ] case
    $s [ swap string drop             ] case
    $n [ swap n:to-string string drop ] case
    drop ;

  :handle (ac-a)
    $\ [ fetch-next char ] case
    $% [ fetch-next type ] case
    buffer:add ;
---reveal---
  :s:with-format (...s-s)
    [ s:empty [ buffer:set
      [ repeat fetch-next 0; handle again ]
      call drop ] sip ] buffer:preserve ;
}}

Sets

Sets are statically sized arrays. They are represented in memory as:

count
data #1 (first)
...
data #n (last)

Since the count comes first, a simple fetch will suffice to get it, but for completeness (and to allow for future changes), we wrap this as set:length:

:set:length (a-n) fetch ;

The first couple of words are used to create sets. The first, set:from-results executes a quote and constructs a set from the returned values.

:set:from-results (q-a)
  depth [ call ] dip depth swap -
  here [ dup , [ , ] times ] dip ;

The second, set:from-string, creates a new string with the characters in given a string.

:set:from-string (s-a)
  s:reverse [ [ ] s:for-each ] curry
  set:from-results ;

A very crucial piece is set:for-each. This runs a quote once against each value in a set. This will be leveraged to implement additional combinators.

{{
  'Q var
---reveal---
  :set:for-each (aq-)
    @Q [ !Q fetch-next
         [ fetch-next swap [ @Q call ] dip ] times drop
       ] dip !Q ;
}}

With this I can easily define set:dup to make a copy of a set.

:set:dup (a-a)
  here [ dup fetch , [ , ] set:for-each ] dip ;

Next is set:filter, which is extracts matching values from a set. This is used like:

[ #1 #2 #3 #4 #5 #6 #7 #8 ] set:from-results
[ n:even? ] set:filter

It returns a new set with the values that the quote returned a TRUE flag for.

:set:filter (aq-)
  [ over [ call ] dip swap [ , ] [ drop ] choose ] curry
  here [ over fetch , set:for-each ] dip here over - n:dec over store ;

Next are set:contains? and set:contains-string? which compare a given value to each item in the array and returns a flag.

{{
  'F var
---reveal---
  :set:contains? (na-f)
    &F v:off
    [ over eq? @F or !F ] set:for-each
    drop @F ;

  :set:contains-string? (na-f)
    &F v:off
    [ over s:eq? @F or !F ] set:for-each
    drop @F ;
}}

I implemented set:map to apply a quotation to each item in a set and construct a new set from the returned values.

Example:

[ #1 #2 #3 ] set:from-results
[ #10 * ] set:map
:set:map (aq-a)
  [ call , ] curry
  here [ over fetch , set:for-each ] dip ;

You can use set:reverse to make a copy of a set with the values reversed. This can be useful after a set:from-results.

:set:reverse (a-a)
  here [ fetch-next [ + n:dec ] sip dup ,
         [ dup fetch , n:dec ] times drop
       ] dip ;

set:nth provides a quick means of adjusting a set and offset into an address for use with fetch and store.

:set:nth (an-a)
  + n:inc ;

set:reduce takes a set, a starting value, and a quote. It executes the quote once for each item in the set, passing the item and the value to the quote. The quote should consume both and return a new value.

:set:reduce (pnp-n)
  [ swap ] dip set:for-each ;

Muri: an assembler

Muri is my minimalist assembler for Nga. This is an attempt to implement something similar in Retro.

This is kept in the global namespace, but several portions are kept private.

{{

I allocate a small buffer for each portion of an instruction bundle.

'I0 d:create #3 allot
'I1 d:create #3 allot
'I2 d:create #3 allot
'I3 d:create #3 allot

The opcode word maps a two character instruction to an opcode number.

:opcode (s-n)
  '.. [ #0  ] s:case  'li [ #1  ] s:case
  'du [ #2  ] s:case  'dr [ #3  ] s:case
  'sw [ #4  ] s:case  'pu [ #5  ] s:case
  'po [ #6  ] s:case  'ju [ #7  ] s:case
  'ca [ #8  ] s:case  'cc [ #9  ] s:case
  're [ #10 ] s:case  'eq [ #11 ] s:case
  'ne [ #12 ] s:case  'lt [ #13 ] s:case
  'gt [ #14 ] s:case  'fe [ #15 ] s:case
  'st [ #16 ] s:case  'ad [ #17 ] s:case
  'su [ #18 ] s:case  'mu [ #19 ] s:case
  'di [ #20 ] s:case  'an [ #21 ] s:case
  'or [ #22 ] s:case  'xo [ #23 ] s:case
  'sh [ #24 ] s:case  'zr [ #25 ] s:case
  'en [ #26 ] s:case  drop #0 ;

I use pack to combine the individual parts of the instruction bundle into a single cell.

:pack (-n)
  &I0 opcode
  &I1 opcode
  &I2 opcode
  &I3 opcode
  #-24 shift  swap
  #-16 shift + swap
  #-8  shift + swap + ;

Switch to the public portion of the code.

---reveal---

With this it's pretty easy to implement the instruction bundle handler. Named i, this takes a string with four instruction names, splits it into each part, calls opcode on each and then pack to combine them before using , to write them into the Heap.

:i (s-)
  dup &I0 #2 copy #2 +
  dup &I1 #2 copy #2 +
  dup &I2 #2 copy #2 +
      &I3 #2 copy
  pack , ;

The d word inlines a data item.

:d (n-)
  , ;

And r inlines a reference (pointer).

:r (s-)
  d:lookup d:xt fetch , ;

The final bits are as{ and }as, which start and stop the assembler. (Basically, they just turn the Compiler on and off, restoring its state as needed).

:as{ (-f)
  @Compiler &Compiler v:off ; immediate

:}as (f-?)
  !Compiler ; immediate

This finishes by sealing off the private words.

}}

Evaluating Source

The standard interfaces have their own approaches to getting and dealing with user input. Sometimes though it'd be nicer to have a way of evaluating code from within RETRO itself. This provides an evaluate word.

{{

First, create a buffer for the string to be evaluated. This is sized to allow for a standard FORTH block to fit, or to easily fit a RETRO style 512 character block. It's also long enough for most source lines I expect to encounter when working with files.

  'Current-Line d:create
    #1025 allot

To make use of this, we need to know how many tokens are in the input string. The count-tokens word will do this, by filtering out anything other than spaces and getting the size of the remaining string.

  :count-tokens (s-n)
    [ ASCII:SPACE eq? ] s:filter s:length ;

The next-token word splits the remainimg string on SPACE and returns both parts.

  :next-token (s-ss)
    ASCII:SPACE s:split ;

And then the process-tokens uses next-token and interpret to go through the string, processing each token in turn. Using the standard interpret word allows for proper handling of the prefixes and classes so everything works just as if entered directly.

  :process-tokens (sn-)
    [ next-token swap
      [ dup s:length n:-zero? [ interpret ] [ drop ] choose ] dip n:inc
    ] times interpret ;
---reveal---

And finally, tie it all together into the single exposed word evaluate.

  :s:evaluate (s-...)
    &Current-Line s:copy
    &Current-Line dup count-tokens process-tokens ;
}}

I/O

Retro really only provides one I/O function in the standard interface: pushing a character to the output log.

:putc (c-) `1000 ;

This can be used to implement words that push other item to the log.

:nl   (-)  ASCII:LF putc ;
:sp   (-)  ASCII:SPACE putc ;
:tab  (-)  ASCII:HT putc ;
:puts (s-) [ putc ] s:for-each ;
:putn (n-) n:to-string puts ;

Different inteface layers may provide additional I/O words.

Debugging Aids

I provide just a few debugging aids.

:words      (-)  [ d:name puts sp ] d:for-each ;
:reset      (...-) depth repeat 0; push drop pop #1 - again ;
:dump-stack (-)  depth 0; drop push dump-stack pop dup putn sp ;

The End

Legalities

Permission to use, copy, modify, and/or distribute this software for any purpose with or without fee is hereby granted, provided that the copyright notice and this permission notice appear in all copies.

THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

Copyright (c) 2008 - 2017, Charles Childers
Copyright (c) 2012 - 2013, Michal J Wallace
Copyright (c) 2009 - 2011, Luke Parrish
Copyright (c) 2009 - 2010, JGL
Copyright (c) 2010 - 2011, Marc Simpson
Copyright (c) 2011 - 2012, Oleksandr Kozachuk
Copyright (c) 2010,        Jay Skeer
Copyright (c) 2010,        Greg Copeland
Copyright (c) 2011,        Aleksej Saushev
Copyright (c) 2011,        Foucist
Copyright (c) 2011,        Erturk Kocalar
Copyright (c) 2011,        Kenneth Keating
Copyright (c) 2011,        Ashley Feniello
Copyright (c) 2011,        Peter Salvi
Copyright (c) 2011,        Christian Kellermann
Copyright (c) 2011,        Jorge Acereda
Copyright (c) 2011,        Remy Moueza
Copyright (c) 2012,        John M Harrison
Copyright (c) 2012,        Todd Thomas