PRAKTIKUM 1 SUBNETTING

I. Pengantar

- > Subnetting adalah pemecahan alamat IP dari jaringan besar ke dalam jaringan yang lebih kecil
- > Subnet adalah kata lain dari jaringan, sedangkan host adalah jumlah anggota di dalam suatu jaringan.
- ➤ Untuk *host* yang dapat dipakai untuk alamat perangkat/*device* (*usable host*) selalu dikurangi 2 alamat karena untuk alamat *network* ID (alamat jaringan) dan *broadcast* ID (alamat fasilitas pengiriman data).
- ➤ Teknik *subnetting* dilakukan apabila kebutuhan jumlah *host* pada setiap *subnetnya* hampir sama. Hal ini disebut *classful* karena di dalam satu jaringan mempunyai *subnet mask* yang sama.
- > Subnetting dilakukan pada IP versi 4.
- ➤ IP v4 menggunakan bilangan biner 32 *bit* yang dipisahkan dengan tanda titik di setiap 8 *bit* (1 oktet).
- Pembacaan dalam 1 oktet adalah dari kiri ke kanan.
- Nilai dari setiap *bit* dari 1 oktet IP v4 adalah sebagai berikut :

2^7	2^6	2^5	2^4	2^3	2^2	2^1	2^0
128	2^6 64	32	16	8	4	2	1

Gambar 1.1 Nilai Bit dalam 1 Oktet

II. Pembahasan

- ➤ Dalam teknik ini lebih cenderung memecah IP v4 dari jumlah *subnet* yang dibutuhkan, karena jumlah *host* yang terbentuk dengan teknik ini adalah sama rata.
- Rumus yang dapat digunakan adalah :

2^N >= Kebutuhan Subnet

Gambar 1.2 Rumus Teknik Subnetting

Diketahui IP: 192.168.100.0 / 30

Tentukan:

- a. Bit yang dipinjam dan subnet mask
- b. Jumlah *subnet* terbentuk
- c. Jumlah host dan usable host terbentuk
- d. Blok subnet

Jawaban:

- a. Bit yang dipinjam dan subnet mask
 - Alamat IP 192.168.100.0 adalah alamat IP v4 kelas C (materi pembagian kelas IP v4) dengan prefiks default / 24 dan subnet mask default 255.255.255.0 atau di dalam bilangan biner adalah 11111111. 11111111.
 11111111.000000000.
 - Prefiks / 30 menandakan terdapat 30 bit 1 yang berada di dalam subnet mask, sehingga bit subnet mask dalam kasus ini menjadi 11111111. 11111111.
 1111111. 11111100.
 - Bit yang dipinjam : 30-24 = 6 bit.

Subnet Mask : 11111111. 11111111. 111111100

= 255.255.255.252

- b. Jumlah *subnet* terbentuk
 - Angka 1 di dalam subnet mask menandakan jumlah subnet terbentuk dan angka 0 di dalam subnet mask menandakan jumlah host terbentuk.
 - Karena di dalam kasus ini menggunakan IP v4 kelas C sehingga yang diperhatikan adalah oktet keempat dari biner *subnet mask* yaitu **11111100.**
 - Sehingga jumlah *subnet* terbentuk adalah **111111** atau **2**^6 = **64** *subnet* terbentuk.
- c. Jumlah host dan usable host terbentuk
 - Jumlah *host* terbentuk adalah angka 0 di oktet keempat yaitu 00 sehingga perhitungannya menjadi $2^2 = 4$ host di setiap subnetnya.
 - Usable host $2^2 2 = 4 2 = 2$ usable host d setiap subnetnya karena jumlah usable host selalu dikurangi 2 untuk alamat network ID dan broadcast ID.
- d. Blok *subnet* adalah tabel IP yang terbentuk dari perhitungan *subnet mask* yang telah dihitung sebagai berikut :

Tabel 1.1 Blok *Subnet* Terbentuk

Subnet ke-	Net ID	Range IP	Broadcast ID				
1	192.168.100.0	192.168.100.1 - 192.168.100.2	192.168.100.3				
2	192.168.100.4	192.168.100.5 - 192.168.100.6	192.168.100.7				
3	192.168.100.8	192.168.100.9 - 192.168.100.10	192.168.100.11				
4	192.168.100.12	192.168.100.13 - 192.168.100.14	192.168.100.15				
5	192.168.100.16	192.168.100.17 - 192.168.100.18	192.168.100.19				
SETERUSNYA							
64	192.168.100.252	192.168.100.253 - 192.168.100.254	192.168.100.255				

➤ Dalam sebuah gedung terdapat 3 ruangan dengan IP 197.0.0.0 / 24.

Buatlah alokasi alamat IP dari masing-masing *subnet* agar efisien. Tentukan pembagian IP lengkap dengan *subnet mask*, *subnet* terbentuk, *host* terbentuk, serta blok *subnet* pada setiap ruangan!

Jawaban:

- a. Bit yang dipinjam dan subnet mask
 - Digunakan rumus $2^n >= 3$ ruangan. Sehingga pangkat yang ditemukan adalah $2^2 >= 3$.
 - Dari perhitungan tersebut bisa ditentukan *bit* yang dipinjam adalah 2 *bit*, sehingga *subnet mask* adalah 11111111. 11111111. 11111111. 11000000 atau 255.255.255.192.
 - Prefiks baru yang terbentuk adalah / 26.
- b. Jumlah *subnet* terbentuk
 - Jumlah *subnet* terbentuk adalah $2^2 = 4$ *subnet* terbentuk.
- c. Jumlah host dan usable host
 - Jumlah *host* terbentuk adalah $2^6 = 64$ *host*.
 - Jumlah *usable host* terbentuk adalah $2^6 2 = 62$ *usable host*.
- d. Blok subnet:

Tabel 1.2 Blok Subnet Terbentuk

Subnet ke-	Net ID	Range IP	Broadcast ID
1	197.0.0.0	197.0.0.1 - 197.0.0.62	197.0.0.63
2	197.0.0.64	197.0.0.65 - 197.0.0.126	197.0.0.127
3	197.0.0.128	197.0.0.129 - 197.0.0.190	197.0.0.191
4	197.0.0.192	197.0.0.193 - 197.0.0.254	197.0.0.255

III. Penugasan

- Diketahui IP:
 - a. 192.168.55.55 / 27
 - b. 202.45.16.17 /30

Tentukan:

- a. Subnet mask
- b. Jumlah *host* dalam jaringan
- c. Terletak di *subnet* keberapa alamat IP tersebut lengkap beserta *network* ID dan *broadcast* ID nya.