

Teknologi dibalik IoT

Perangkat Internet of Things memiliki beberapa komponen dasar sebagai berikut:

- Papan PCB
- Arsitektur CPU / Mikrokontroler
- Interface
- Port

Komponen-komponen ini adalah komponen pembentuk papan IoT yang digunakan hingga saat ini.

The Board #1

Layaknya papan elektronik lainnya, perangkat *Internet of Things* juga terdiri dari beberapa komponen elektronik seperti **resistor**, **kapasitor**, hingga *Integrated Circuit/IC*. Namun yang membedakan teknologi ini dengan papan elektronik lainnya adalah *ukurannya*

Papan pemrosesan atau komputasi *Internet of Things* memiliki ukuran hingga maksimal 3,5 inch secara diagonal. Sehingga komponen-komponen yang ada di dalamnya harus berukuran sangat-sangat kecil.

Meski berukuran kecil, papan *Internet of Things* juga sensitif terhadap *Electric Static Discharge* / ESD atau dikenal sebagai listrik statis yang tersimpan di masing-masing komponen IoT.

The Board #2

Peringatan

Korsleting bisa terjadi jika tangan basah atau benda metal menyentuh papan IoT yang baru dimatikan. ESD dapat terjadi meskipun perangkat IoT tidak pernah terhubung ke soket listrik.

Oleh karena itu, komponen-komponen IoT selalu dibungkus dalam plastik khusus agar terhindar dari ESD yang ada maupun debu-debu.

The Board #3

Papan IoT ini tentu saja memerlukan pasokan listrik untuk menghidupkan komponen lainnya. Sehingga dalam menyediakan daya untuk perangkat, pengguna harus memahami batasan pasokan listrik yang diterima oleh perangkat IoT.

Standarnya perangkat IoT hanya boleh diberik listrik dengan tegangan 3.3V untuk papan berukuran kecil (Mikrokontroler) dan 5V papan berukuran 3.5 (System-on-Chip) tergantung dari manufaktur yang membuat.

The Board #4

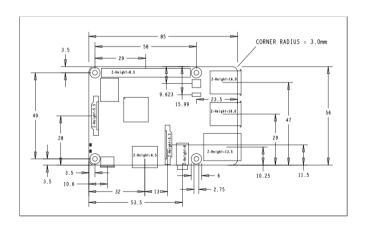
Peringatan - Undervoltage

Perangkat yang diberi tegangan yang kurang dari standar akan menyebabkan perangkat mengalami *Undervoltage*. Keadaan ini memaksa perangkat melakukan *throttling* sehingga perangkat bekerja menjadi lambat, bahkan tidak akan menyala.

Berbahaya - Overvoltage

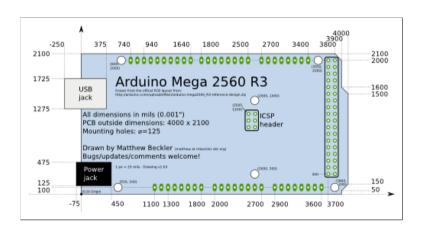
Kondisi ini sangat berbahaya bagi perangkat karena dapat menyebabkan kerusakan fatal pada perangkat. Meskipun beberapa perangkat sudah dilengkat dengan *Overvoltage Protection*, namun fitur ini hanya berlaku sekali.

The Board #4



Peringatan Voltase Rendah

Hal ini akan terjadi jika power supply tidak sesuai atau komponen terlalu banyak


USM

Skematik Raspberry Pi

USM USM

Skematik Arduino

Arsitektur CPU

Dikarenakan penggunaan daya yang berbeda dengan komputer biasa, maka sebagian besar perangkat IoT dibuat dengan arsitektur CPU yang berbeda. Hal ini dikarenakan penggunaan daya yang rendah, sehingga prosesor biasa tidak bisa diguankan.

Perangkat IoT biasanya menggunakan teknologi:

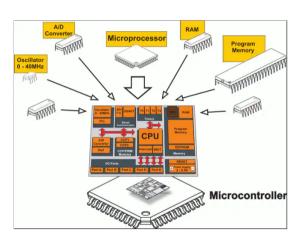
- Mikrokontroler
- System-on-Chip

Mikrokontroler #1

Mikrokontroler (kadang-kadang disebut MCU atau Unit Mikrokontroler) adalah Sirkuit Terpadu (IC) tunggal yang biasanya digunakan untuk aplikasi tertentu dan dirancang untuk mengimplementasikan tugas-tugas tertentu.

Pada dasarnya, mikrokontroler mengumpulkan input, memproses informasi ini, dan mengeluarkan tindakan tertentu berdasarkan informasi yang dikumpulkan. Mikrokontroler biasanya beroperasi pada kecepatan yang lebih rendah, sekitar kisaran 1MHz hingga 200 MHz, dan perlu dirancang untuk mengkonsumsi lebih sedikit daya

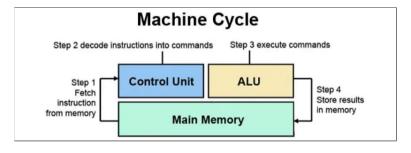
Mikrokontroler #2

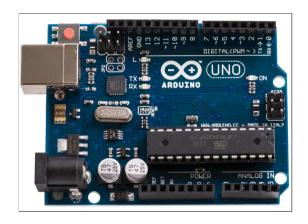

Mikrokontroler dapat dilihat sebagai komputer kecil, karena komponen penting di dalamnya; Central Processing Unit (CPU), Random-Access Memory (RAM), Flash Memory, Serial Bus Interface, Input/Output Ports (I/O Ports).

Info

Dikarenakan ukurannya yang kecil dan murah, perangkat IoT berbasis mikrokontroler dibanderol lebih murah dibandingkan berbasis *System-on-Chip*. Namun memiliki kelemahan dalam kekuatan komputasi

USM USM

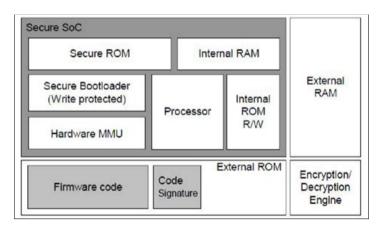

Isi Mikrokontroler


Desain Mikrokontroler

Dua komponen utamanya adalah Unit Logika Aritmatika (ALU), yang melakukan operasi aritmatika dan logika, dan Unit Kontrol (CU), yang menangani semua eksekusi instruksi prosesor.

USM USM

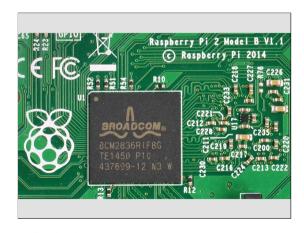
Arduino dengan ATMega



System-on-Chip #1

System-on-Chip, adalah sirkuit terpadu yang mengintegrasikan semua atau sebagian besar komponen komputer atau sistem elektronik lainnya. Komponen ini hampir selalu mencakup unit pemrosesan pusat (CPU), antarmuka memori, perangkat input/output, antarmuka input/output, dan antarmuka penyimpanan sekunder, sering kali bersama dengan komponen lain seperti modem radio dan unit pemrosesan grafis (GPU). – semua dalam satu substrat atau microchip.

Isi System-on-Chip


Isi System-on-Chip

Meski hampir memiliki fitur seperti komputer biasa, namun SoC lebih lengkap dengan komponen seperti berikut:

- Processor cores
- Memory
- Interfaces
- Digital signal processors
- ▶ GPU
- Network on a chip

USM USM

Raspberry Pi 2 dengan Broadcom SoC

Advanced RISC Machine

Beberapa *System-on-Chip* menggunakan teknologi *Advanced RISC Machine* sebagai arsitektur CPU. Teknologi ini sangat berbeda dengan yang dihadirkan oleh Intel maupun AMD yang menggunakan teknologi CISC.

Antarmuka Internet of Things

Antarmuka ini merujuk ke protokol komunikasi secara fisik, bukan melalui jaringan. Dikarenakan perangkat *Internet of Things* juga harus berkomunikasi dengan sensor maupun aktuator sehingga antarmuka komunikasi media fisik ini tersedia untuk digunakan.

Jenis komunikasi protokol yang bisa digunakan:

- UART
- ► 12C
- SPI
- ► GPIO

UART dan I2C

UART (*Universal Asynchronous Receiver / Transmitter*) adalah implementasi perangkat keras yang mendukung komunikasi serial dua arah, asinkron.

I2C (*Inter-Integrated Circuit*) adalah antarmuka komunikasi serial dua arah, sinkron. Jika beroperasi pada dua saluran dalam mode setengah dupleks.

Komponen I2C

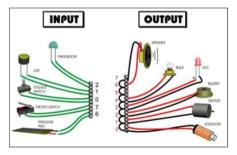
SPI dan GPIO

SPI (*Serial Peripheral Interface*) adalah antarmuka komunikasi serial dua arah, sinkron, - seperti I2C. Namun tidak seperti I2C, SPI beroperasi pada full duplex, artinya data dapat dikirim dan diterima secara bersamaan.

GPIO (General-purpose Input/Output) adalah pin sinyal pada sirkuit atau papan terintegrasi yang dapat digunakan untuk melakukan fungsi input atau output digital. Secara desain, ia tidak memiliki tujuan yang telah ditentukan sebelumnya dan dapat digunakan oleh pengembang perangkat keras atau perangkat lunak untuk melakukan fungsi yang mereka pilih.

Komponen Internal IoT SPI dan GPIO

Komponen SPI



Port GPIO

I/O Ports

Port I/O adalah apa yang digunakan mikrokontroler untuk terhubung ke aplikasi dunia nyata. Input menerima perubahan di dunia nyata, dari penginderaan, hingga tombol tekan, dan banyak lagi.

