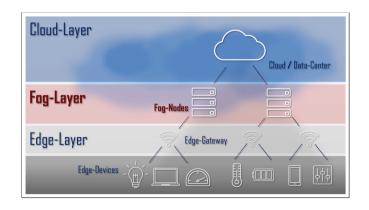


Apa itu Edge dan Fog Computing?


Alternatif komputasi dari awan yang di mana memiliki biaya perangkat lebih mudah. Biasanya penggunanya dapat menggunakan perangkat-perangkat yang ada di sektiar (komputer bekas) atau IoT SoC sebagai komputasi dasarnya. Namun yang membedakan adalah **Lokasi Komputasi**.

▶ **Fog** : Berada di satu jaringan yang sama (WiFi / LAN)

► Edge : Perangkat sehari-hari pengguna (Laptop, Komputer)

Arsitektur Komputasi

Apa itu Edge dan Fog Computing?

Sifat perangkat daripada **Fog Computing** adalah tidak tersentuh manusia (Tidak dekat dan jauh) setiap hari. Apabila ada perangkat yang disentuh manusia setiap hari dianggap sebagai **Edge** (Dekat dengan pengguna).

Perangkat-perangkat yang bisa digunakan:

- Fog Computing
 - Single Board Computer
 - 2. Server
- Edge Computing
 - 1. Laptop
 - 2. Komputer

Perbandingan Edge dan Fog Computing

Latensi

- ► Fog Computing: Menawarkan latensi yang lebih rendah dibandingkan dengan komputasi awan tetapi mungkin memiliki latensi yang lebih tinggi daripada komputasi edge. Cocok untuk aplikasi yang dapat menerima tingkat latensi moderat.
- ▶ Edge Computing: Meminimalkan latensi dengan memproses data secara lokal, sehingga ideal untuk aplikasi waktu nyata. Cocok untuk aplikasi yang membutuhkan latensi sangat rendah, seperti kendaraan otonom dan otomasi industri.

Perbandingan Edge dan Fog Computing

Skalabilitas

- ► Fog Computing: Menawarkan skalabilitas yang lebih baik dibandingkan dengan komputasi awan tradisional. Cocok untuk aplikasi dengan jumlah perangkat dan pemrosesan yang tidak terlalu banyak
- ▶ Edge Computing: Sangat dapat diskalakan, terutama untuk aplikasi dengan sejumlah besar perangkat yang tersebar. Mendukung komputasi terdistribusi, sehingga memungkinkan skalabilitas yang mulus.

Perbandingan Edge dan Fog Computing

Sumber Daya

- ► Fog Computing: Memanfaatkan sumber daya secara lebih efisien daripada komputasi awan tradisional. Mendistribusikan tugas komputasi di seluruh fog node, mengoptimalkan pemanfaatan sumber daya.
- ▶ Edge Computing: Memaksimalkan pemanfaatan sumber daya dengan memproses data di tepi, mengurangi beban pada sumber daya cloud terpusat. Efisien untuk aplikasi dengan berbagai kebutuhan komputasi.

Perangkat Fog Computing

- ► **Fog Node**: Perangkat komputasi yang menjadi tulang punggung infrastruktur komputasi kabut.
- ▶ Middleware Komputasi Kabut : Middleware dalam Komputasi Kabut bertindak sebagai jembatan antara fog node dan aplikasi.
- ► API Komputasi Kabut: Application Programming Interfaces (API) dalam Fog Computing menyediakan cara standar bagi aplikasi untuk berinteraksi dengan infrastruktur fog computing
- ► Integrasi Kabut-ke-Awan: Komputasi Kabut sering kali diintegrasikan dengan sumber daya komputasi awan tradisional.

Perangkat Edge Computing

- ► Perangkat Edge: Perangkat edge adalah titik akhir di mana data dihasilkan atau dikonsumsi.
- ▶ **Node Komputasi Edge** : Node komputasi tepi adalah perangkat komputasi yang terletak di dekat perangkat tepi.
- ▶ **Middleware Komputasi Edge**: Middleware dalam Edge Computing menyediakan lapisan perangkat lunak yang memfasilitasi komunikasi dan koordinasi antara perangkat edge dan cloud.
- ► Integrasi Edge-to-Cloud : Komputasi Tepi sering kali diintegrasikan dengan sumber daya komputasi awan.

Integrasi ke Cloud Computing

Fog Computing

Fog node berkolaborasi dengan server cloud untuk mengurangi tugas-tugas yang membutuhkan sumber daya, memastikan keseimbangan antara pemrosesan lokal dan terpusat. Sumber daya cloud dapat digunakan untuk penyimpanan, analisis data, atau menangani tugas-tugas yang melebihi kapasitas fog node.

Edge Computing

Edge node berkolaborasi dengan server cloud untuk tugas-tugas yang membutuhkan daya komputasi yang signifikan atau analisis data historis. Sumber daya cloud dapat digunakan untuk penyimpanan jangka panjang, melatih model pembelajaran mesin, atau menangani beban kerja puncak.

Manfaat Integrasi

- ▶ Peningkatan Skalabilitas : Fog dan Edge Computing mendapatkan manfaat dari skalabilitas sumber daya cloud yang elastis selama permintaan puncak.
- ► Kemampuan Penyimpanan yang Ditingkatkan: Penyimpanan awan dimanfaatkan untuk penyimpanan dan pengambilan data jangka panjang, melengkapi kapasitas penyimpanan yang terbatas di edge.
- ▶ Pemanfaatan Sumber Daya yang Dioptimalkan: Integrasi cloud memastikan bahwa sumber daya komputasi digunakan secara efisien di seluruh infrastruktur Fog dan Edge Computing yang terdistribusi.

Tantangan

- Masalah Latensi: Tergantung pada kebutuhan aplikasi, integrasi harus secara hatihati menyeimbangkan pemrosesan lokal untuk latensi rendah dan pemrosesan cloud untuk skalabilitas.
- ► **Keamanan dan Privasi**: Transmisi data antara edge/fog node dan cloud harus aman untuk melindungi dari potensi ancaman keamanan dan memastikan privasi pengguna.

