retroforth/tools/retro-extend.forth
crc b602aabea1 add retro-extend written in retro
FossilOrigin-Name: 454964c4c38d225882f00a27d4902a6ba18ef4489ce551942ee2814b079f6381
2019-01-30 01:42:25 +00:00

249 lines
6 KiB
Forth
Executable file

#!/usr/bin/env retro
There are two parts to building a Retro image. The first is the
assembly of the kernel using `retro-muri`. The second is to use
the kernel words and build up a complete image. I use this tool
(or an equivilent in C) for this.
# Unu
Since sources are written in a literate format I have a version
of the `retro-unu` tool included here. This will run a quote on
each line in the source that is a fenced region.
~~~
{{
'Fenced var
:toggle-fence @Fenced not !Fenced ;
:fenced? (-f) @Fenced ;
:handle-line (s-)
fenced? [ over call ] [ drop ] choose ;
---reveal---
:unu (sq-)
swap [ dup '~~~ s:eq?
[ drop toggle-fence ]
[ handle-line ] choose
] file:for-each-line drop ;
}}
~~~
# Nga in Retro
Since this is written in Retro and builds a new image, I need
to keep the two instances separate. To do this, I implement a
version of the Nga virtual machine in Retro. This will execute
code in the new image.
So first, allocate a memory region for the new image and
stacks. I also create variables to hold the instruction and
stack pointers.
~~~
#65535 #4 * 'IMAGE-SIZE const
'Image d:create IMAGE-SIZE allot
'DataStack d:create #1024 allot
'ReturnStack d:create #4096 allot
'SP var
'RP var
'IP var
~~~
There are a few items in the kernel I need to access as this
progresses. I will fill in the value for `interpret` later.
~~~
#1025 &Image + 'TIB const
'interpret var
~~~
I next define helpers to move values to/from the host data
stack to the target ones.
~~~
:>s (n-) &DataStack @SP + store &SP v:inc ;
:s> (-n) &SP v:dec &DataStack @SP + fetch ;
:>r (n-) &ReturnStack @RP + store &RP v:inc ;
:r> (-n) &RP v:dec &ReturnStack @RP + fetch ;
~~~
One more helper here: a word to return the value that the
`IP` register points to in the target memory.
~~~
:[IP] @IP &Image + fetch ;
~~~
Ok, now for the instructions. See the Nga documentation
for these. Basically I just move things to/from the target
stacks, use the host words, then push the updated values
back.
~~~
:i:no ;
:i:li &IP v:inc [IP] >s ;
:i:du s> dup >s >s ;
:i:dr s> drop ;
:i:sw s> s> swap >s >s ;
:i:pu s> >r ;
:i:po r> >s ;
:i:ju s> n:dec !IP ;
:i:ca @IP >r i:ju ;
:i:cc s> s> [ >s i:ca ] [ drop ] choose ;
:i:re r> !IP ;
:i:eq s> s> eq? >s ;
:i:ne s> s> -eq? >s ;
:i:lt s> s> swap lt? >s ;
:i:gt s> s> swap gt? >s ;
:i:fe s> #-1 [ @SP >s ] case
#-2 [ @RP >s ] case
#-3 [ #65535 #4 * >s ] case
&Image + fetch >s ;
:i:st s> s> swap &Image + store ;
:i:ad s> s> + >s ;
:i:su s> s> swap - >s ;
:i:mu s> s> * >s ;
:i:di s> s> swap /mod >s >s ;
:i:an s> s> and >s ;
:i:or s> s> or >s ;
:i:xo s> s> xor >s ;
:i:sh s> s> swap shift >s ;
:i:zr s> dup n:zero? [ drop i:re ] [ >s ] choose ;
:i:en #0 !RP ;
:i:ie #1 >s ;
:i:iq #0 dup >s >s ;
:i:ii s> s> nip c:put ;
~~~
As with the C implementation, I use a jump table to map the
instructions to their handlers.
~~~
'Instructions d:create
&i:no , &i:li , &i:du , &i:dr , &i:sw , &i:pu ,
&i:po , &i:ju , &i:ca , &i:cc , &i:re , &i:eq ,
&i:ne , &i:lt , &i:gt , &i:fe , &i:st , &i:ad ,
&i:su , &i:mu , &i:di , &i:an , &i:or , &i:xo ,
&i:sh , &i:zr , &i:en , &i:ie , &i:iq , &i:ii ,
~~~
Now to actually process the instructions. Instructions are
packed, so I need a word to unpack them. This is a simple
matter of shifting and masking.
~~~
{{
:mask #255 and ;
:next #8 shift ;
---reveal---
:unpack (n-dcba)
dup mask swap next
dup mask swap next
dup mask swap next
'abcd 'dcba reorder ;
}}
~~~
Processing of a single opcode is next. This will do some
validation to make sure the opcode is in the expected range.
~~~
:process-single-opcode (n-)
dup #0 #29 n:between?
[ &Instructions + fetch call ]
[ 'Invalid_Instruction:_%n_! s:format s:put nl ] choose ;
~~~
And then a word to process a packed opcode. This also traps
the `err:notfound` to report on word-not-found conditions.
Todo: the address of `err:notfound` shouldn't be hard coded
here.
~~~
:process-packed-opcode (n-)
@IP #339 eq? [ #1025 &Image + s:put sp $? c:put nl ] if
unpack
process-single-opcode
process-single-opcode
process-single-opcode
process-single-opcode ;
~~~
The final part of running code in the target is the
`execute` word. This will run through code until the
top level word called returns.
~~~
:execute (a-)
!IP #0 >r
[ [IP] process-packed-opcode &IP v:inc
@RP n:zero? ] until ;
~~~
# Load the Kernel
~~~
'FID var
:read-byte (n-) @FID file:read #255 and ;
:read-cell (-n)
read-byte
read-byte
read-byte
read-byte
#-8 shift +
#-8 shift +
#-8 shift + ;
:load-image (s-)
file:R file:open !FID
&Image @FID file:size #4 / [ read-cell over store n:inc ] times drop
@FID dup file:size #4 / n:put '_cells s:put nl file:close ;
'ngaImage load-image
~~~
# Map in Functions
~~~
'Find_`interpret`... s:put
:image:Dictionary &Image #2 + ;
image:Dictionary fetch
[ repeat fetch 0; dup d:name 'interpret s:eq?
[ dup d:xt fetch !interpret ] if again ] call
'_@_ s:put @interpret n:put nl
~~~
# Process the Extensions
~~~
#0 sys:argv
[ &Heap
[ ASCII:SPACE s:tokenize
[ dup s:length n:zero? &drop [ TIB s:copy #1025 >s @interpret execute ] choose $. c:put ] set:for-each
] v:preserve ] unu nl
~~~
# Save the Image
~~~
'FID var
:write-byte (n-) @FID file:write ;
:mask (n-) #255 and ;
:write-cell (n-)
dup mask write-byte
#8 shift dup mask write-byte
#8 shift dup mask write-byte
#8 shift mask write-byte ;
:save-image (s-)
file:W file:open !FID
&Image &Image #3 + fetch [ fetch-next write-cell ] times drop
@FID file:close ;
'ngaImage2 save-image
~~~