retroforth/interfaces/native/retro.c
crc 6db550a675 fix a bug in the " prefix, rebuild image file as needed
FossilOrigin-Name: 1b03302f540c899cadeae9d097773f3707dbd4ee25acb0e8b5507e06dcc4cde7
2019-02-22 03:35:28 +00:00

561 lines
13 KiB
C

/* RETRO -------------------------------------------------------------
A personal, minimalistic forth
Copyright (c) 2016 - 2019 Charles Childers
This is the `repl`, a basic interactive interface for RETRO. It is
intended to be simple and very minimalistic, providing the minimal
I/O and additions needed to support a basic RETRO system. For a much
larger system, see `rre`.
I'll include commentary throughout the source, so read on.
---------------------------------------------------------------------*/
#include <sys/types.h>
#include "image.c"
int getchar(void);
int putchar(int c);
long stack_pop();
void stack_push(long value);
int remap(int c) {
int a = c;
#ifdef USE_DVORAK
switch (c) {
case 'q': a = '\''; break; case 'Q': a = '"'; break;
case 'w': a = ','; break; case 'W': a = '<'; break;
case 'e': a = '.'; break; case 'E': a = '>'; break;
case 'r': a = 'p'; break; case 'R': a = 'P'; break;
case 't': a = 'y'; break; case 'T': a = 'Y'; break;
case 'y': a = 'f'; break; case 'Y': a = 'F'; break;
case 'u': a = 'g'; break; case 'U': a = 'G'; break;
case 'i': a = 'c'; break; case 'I': a = 'C'; break;
case 'o': a = 'r'; break; case 'O': a = 'R'; break;
case 'p': a = 'l'; break; case 'P': a = 'L'; break;
case '[': a = '/'; break; case '{': a = '?'; break;
case ']': a = '='; break; case '}': a = '+'; break;
case 'a': a = 'a'; break; case 'A': a = 'A'; break;
case 's': a = 'o'; break; case 'S': a = 'O'; break;
case 'd': a = 'e'; break; case 'D': a = 'E'; break;
case 'f': a = 'u'; break; case 'F': a = 'U'; break;
case 'g': a = 'i'; break; case 'G': a = 'I'; break;
case 'h': a = 'd'; break; case 'H': a = 'D'; break;
case 'j': a = 'h'; break; case 'J': a = 'H'; break;
case 'k': a = 't'; break; case 'K': a = 'T'; break;
case 'l': a = 'n'; break; case 'L': a = 'N'; break;
case ';': a = 's'; break; case ':': a = 'S'; break;
case '\'': a = '-'; break; case '"': a = '_'; break;
case 'z': a = ';'; break; case 'Z': a = ':'; break;
case 'x': a = 'q'; break; case 'X': a = 'Q'; break;
case 'c': a = 'j'; break; case 'C': a = 'J'; break;
case 'v': a = 'k'; break; case 'V': a = 'K'; break;
case 'b': a = 'x'; break; case 'B': a = 'X'; break;
case 'n': a = 'b'; break; case 'N': a = 'B'; break;
case 'm': a = 'm'; break; case 'M': a = 'M'; break;
case ',': a = 'w'; break; case '<': a = 'W'; break;
case '.': a = 'v'; break; case '>': a = 'V'; break;
case '/': a = 'z'; break; case '?': a = 'Z'; break;
case '-': a = '['; break; case '_': a = '{'; break;
case '=': a = ']'; break; case '+': a = '}'; break;
}
#endif
return a;
}
unsigned char inportb(unsigned int port)
{
unsigned char ret;
asm volatile ("inb %%dx,%%al":"=a" (ret):"d" (port));
return ret;
}
void outportb(unsigned int port,unsigned char value)
{
asm volatile ("outb %%al,%%dx": :"d" (port), "a" (value));
}
void store() {
long address = stack_pop();
long value = stack_pop();
*((int*)address) = value;
}
void fetch() {
stack_push(*((int*)stack_pop()));
}
void storeb() {
long address = stack_pop();
long value = stack_pop();
*((char *)address) = (char)value;
}
void fetchb() {
stack_push((long)*((char*)stack_pop()) & 0xFF);
}
static inline uint16_t inw(uint16_t port)
{
uint16_t ret;
asm volatile ( "inw %1, %0"
: "=a"(ret)
: "Nd"(port) );
return ret;
}
static inline void outw(uint16_t port, uint16_t val)
{
asm volatile ( "outw %0, %1" : : "a"(val), "Nd"(port) );
}
/*---------------------------------------------------------------------
Next we get into some things that relate to the Nga virtual machine
that RETRO runs on.
---------------------------------------------------------------------*/
#define CELL long /* Cell size (32 bit, signed integer */
#define IMAGE_SIZE 524288 * 8 /* Amount of RAM. 4MiB by default. */
#define ADDRESSES 1024 /* Depth of address stack */
#define STACK_DEPTH 128 /* Depth of data stack */
CELL sp, rp, ip; /* Data, address, instruction pointers */
CELL data[STACK_DEPTH]; /* The data stack */
CELL address[ADDRESSES]; /* The address stack */
CELL memory[IMAGE_SIZE + 1]; /* The memory for the image */
#define TOS data[sp] /* Shortcut for top item on stack */
#define NOS data[sp-1] /* Shortcut for second item on stack */
#define TORS address[rp] /* Shortcut for top item on address stack */
#ifdef TARGET_X86
#define NUM_DEVICES 3
#else
#define NUM_DEVICES 2
#endif
typedef void (*Handler)(void);
Handler IO_deviceHandlers[NUM_DEVICES + 1];
Handler IO_queryHandlers[NUM_DEVICES + 1];
/*---------------------------------------------------------------------
Function prototypes.
---------------------------------------------------------------------*/
void execute(int cell);
CELL ngaLoadImage(char *imageFile);
void ngaPrepare();
void ngaProcessOpcode(CELL opcode);
void ngaProcessPackedOpcodes(CELL opcode);
int ngaValidatePackedOpcodes(CELL opcode);
/*---------------------------------------------------------------------
Now to the fun stuff: interfacing with the virtual machine. There are
a things I like to have here:
- push a value to the stack
- pop a value off the stack
- extract a string from the image
- inject a string into the image.
- lookup dictionary headers and access dictionary fields
---------------------------------------------------------------------*/
/*---------------------------------------------------------------------
Stack push/pop is easy. I could avoid these, but it aids in keeping
the code readable, so it's worth the slight overhead.
---------------------------------------------------------------------*/
CELL stack_pop() {
sp--;
return data[sp + 1];
}
void stack_push(CELL value) {
sp++;
data[sp] = value;
}
/*---------------------------------------------------------------------
This is an implementation of the generic output device. It's set to
write output to the standard display.
---------------------------------------------------------------------*/
void generic_output() {
stack_pop();
}
void generic_output_query() {
stack_push(0);
stack_push(0);
}
#ifdef TARGET_X86
void portio() {
CELL p, v;
switch (stack_pop()) {
case 0: stack_push((CELL)inportb((unsigned int)stack_pop()));
break;
case 1: p = stack_pop();
v = stack_pop();
outportb((unsigned int)p, (unsigned char)v);
break;
case 2: store();
break;
case 3: fetch();
break;
case 4: storeb();
break;
case 5: fetchb();
break;
case 6: stack_push((CELL)inw((uint16_t)stack_pop()));
break;
case 7: p = stack_pop();
v = stack_pop();
outw((uint16_t)p, (uint16_t)v);
break;
}
}
void portio_query() {
stack_push(0);
stack_push(2000);
}
#endif
void generic_input() {
stack_push(remap(getchar()));
if (TOS == 127) TOS = 8;
}
void generic_input_query() {
stack_push(0);
stack_push(1);
}
/*---------------------------------------------------------------------
With these out of the way, I implement `execute`, which takes an
address and runs the code at it. This has a couple of interesting
bits.
Nga uses packed instruction bundles, with up to four instructions per
bundle. Since RETRO requires an additional instruction to handle
displaying a character, I define the handler for that here.
This will also exit if the address stack depth is zero (meaning that
the word being run, and it's dependencies) are finished.
---------------------------------------------------------------------*/
void execute(int cell) {
CELL opcode;
rp = 1;
ip = cell;
while (ip < IMAGE_SIZE) {
opcode = memory[ip];
if (ngaValidatePackedOpcodes(opcode) != 0) {
ngaProcessPackedOpcodes(opcode);
} else {
while(1);
}
ip++;
if (rp == 0)
ip = IMAGE_SIZE;
}
}
/*---------------------------------------------------------------------
The `main()` routine. This sets up the Nga VM, loads the image, and
enters a loop.
The loop:
- reads input
- otherwise, pass to `evaluate()` to run
---------------------------------------------------------------------*/
int main(int argc, char **argv) {
IO_deviceHandlers[0] = generic_output;
IO_queryHandlers[0] = generic_output_query;
IO_deviceHandlers[1] = generic_input;
IO_queryHandlers[1] = generic_input_query;
#ifdef TARGET_X86
IO_deviceHandlers[2] = portio;
IO_queryHandlers[2] = portio_query;
#endif
while (1) {
ngaPrepare();
for (CELL i = 0; i < ngaImageCells; i++)
memory[i] = ngaImage[i];
execute(0);
}
}
/* Nga ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Copyright (c) 2008 - 2019, Charles Childers
Copyright (c) 2009 - 2010, Luke Parrish
Copyright (c) 2010, Marc Simpson
Copyright (c) 2010, Jay Skeer
Copyright (c) 2011, Kenneth Keating
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ */
enum vm_opcode {
VM_NOP, VM_LIT, VM_DUP, VM_DROP, VM_SWAP, VM_PUSH, VM_POP,
VM_JUMP, VM_CALL, VM_CCALL, VM_RETURN, VM_EQ, VM_NEQ, VM_LT,
VM_GT, VM_FETCH, VM_STORE, VM_ADD, VM_SUB, VM_MUL, VM_DIVMOD,
VM_AND, VM_OR, VM_XOR, VM_SHIFT, VM_ZRET, VM_END, VM_IE,
VM_IQ, VM_II
};
#define NUM_OPS VM_II + 1
#ifndef NUM_DEVICES
#define NUM_DEVICES 0
#endif
CELL ngaLoadImage(char *imageFile) {
CELL i;
for (i = 0; i < ngaImageCells; i++)
memory[i] = ngaImage[i];
return i;
}
void ngaPrepare() {
ip = sp = rp = 0;
for (ip = 0; ip < IMAGE_SIZE; ip++)
memory[ip] = VM_NOP;
for (ip = 0; ip < STACK_DEPTH; ip++)
data[ip] = 0;
for (ip = 0; ip < ADDRESSES; ip++)
address[ip] = 0;
}
void inst_nop() {
}
void inst_lit() {
sp++;
ip++;
TOS = memory[ip];
}
void inst_dup() {
sp++;
data[sp] = NOS;
}
void inst_drop() {
data[sp] = 0;
if (--sp < 0)
ip = IMAGE_SIZE;
}
void inst_swap() {
CELL a;
a = TOS;
TOS = NOS;
NOS = a;
}
void inst_push() {
rp++;
TORS = TOS;
inst_drop();
}
void inst_pop() {
sp++;
TOS = TORS;
rp--;
}
void inst_jump() {
ip = TOS - 1;
inst_drop();
}
void inst_call() {
rp++;
TORS = ip;
ip = TOS - 1;
inst_drop();
}
void inst_ccall() {
CELL a, b;
a = TOS; inst_drop(); /* False */
b = TOS; inst_drop(); /* Flag */
if (b != 0) {
rp++;
TORS = ip;
ip = a - 1;
}
}
void inst_return() {
ip = TORS;
rp--;
}
void inst_eq() {
NOS = (NOS == TOS) ? -1 : 0;
inst_drop();
}
void inst_neq() {
NOS = (NOS != TOS) ? -1 : 0;
inst_drop();
}
void inst_lt() {
NOS = (NOS < TOS) ? -1 : 0;
inst_drop();
}
void inst_gt() {
NOS = (NOS > TOS) ? -1 : 0;
inst_drop();
}
void inst_fetch() {
switch (TOS) {
case -1: TOS = sp - 1; break;
case -2: TOS = rp; break;
case -3: TOS = IMAGE_SIZE; break;
default: TOS = memory[TOS]; break;
}
}
void inst_store() {
if (TOS <= IMAGE_SIZE && TOS >= 0) {
memory[TOS] = NOS;
inst_drop();
inst_drop();
} else {
ip = IMAGE_SIZE;
}
}
void inst_add() {
NOS += TOS;
inst_drop();
}
void inst_sub() {
NOS -= TOS;
inst_drop();
}
void inst_mul() {
NOS *= TOS;
inst_drop();
}
void inst_divmod() {
CELL a, b;
a = TOS;
b = NOS;
TOS = b / a;
NOS = b % a;
}
void inst_and() {
NOS = TOS & NOS;
inst_drop();
}
void inst_or() {
NOS = TOS | NOS;
inst_drop();
}
void inst_xor() {
NOS = TOS ^ NOS;
inst_drop();
}
void inst_shift() {
CELL y = TOS;
CELL x = NOS;
if (TOS < 0)
NOS = NOS << (TOS * -1);
else {
if (x < 0 && y > 0)
NOS = x >> y | ~(~0U >> y);
else
NOS = x >> y;
}
inst_drop();
}
void inst_zret() {
if (TOS == 0) {
inst_drop();
ip = TORS;
rp--;
}
}
void inst_end() {
ip = IMAGE_SIZE;
}
void inst_ie() {
sp++;
TOS = NUM_DEVICES;
}
void inst_iq() {
CELL Device = TOS;
inst_drop();
IO_queryHandlers[Device]();
}
void inst_ii() {
CELL Device = TOS;
inst_drop();
IO_deviceHandlers[Device]();
}
Handler instructions[NUM_OPS] = {
inst_nop, inst_lit, inst_dup, inst_drop, inst_swap, inst_push, inst_pop,
inst_jump, inst_call, inst_ccall, inst_return, inst_eq, inst_neq, inst_lt,
inst_gt, inst_fetch, inst_store, inst_add, inst_sub, inst_mul, inst_divmod,
inst_and, inst_or, inst_xor, inst_shift, inst_zret, inst_end, inst_ie,
inst_iq, inst_ii
};
void ngaProcessOpcode(CELL opcode) {
if (opcode != 0)
instructions[opcode]();
}
int ngaValidatePackedOpcodes(CELL opcode) {
CELL raw = opcode;
CELL current;
int valid = -1;
int i;
for (i = 0; i < 4; i++) {
current = raw & 0xFF;
if (!(current >= 0 && current <= 29))
valid = 0;
raw = raw >> 8;
}
return valid;
}
void ngaProcessPackedOpcodes(CELL opcode) {
CELL raw = opcode;
int i;
for (i = 0; i < 4; i++) {
ngaProcessOpcode(raw & 0xFF);
raw = raw >> 8;
}
}