retroforth/vm/nga-c/retro-runtime.c
crc 4fb2f1456f retro-compiler: continue cleanup, refactoring to separate out common bits
FossilOrigin-Name: c33321dd6375683b53dd22e201d9b455eb6b601edff7b303f32de55234cdfafd
2020-11-02 12:49:34 +00:00

1025 lines
25 KiB
C

/*---------------------------------------------------------------------
RETRO is a personal, minimalistic forth with a pragmatic focus
This implements Nga, the virtual machine at the heart of RETRO. It
includes a number of I/O interfaces, extensive commentary, and has
been refined by over a decade of use and development.
Copyright (c) 2008 - 2020, Charles Childers
Portions are based on Ngaro, which was additionally copyrighted by
the following:
Copyright (c) 2009 - 2010, Luke Parrish
Copyright (c) 2010, Marc Simpson
Copyright (c) 2010, Jay Skeer
Copyright (c) 2011, Kenneth Keating
---------------------------------------------------------------------*/
/*---------------------------------------------------------------------
C Headers
---------------------------------------------------------------------*/
#include <errno.h>
#include <math.h>
#include <signal.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <sys/wait.h>
#include <time.h>
#include <unistd.h>
#include <limits.h>
#include <fcntl.h>
/*---------------------------------------------------------------------
Configuration
---------------------------------------------------------------------*/
#include "config.h"
/*---------------------------------------------------------------------
Image, Stack, and VM variables
---------------------------------------------------------------------*/
CELL sp, rp, ip; /* Stack & instruction pointers */
CELL data[STACK_DEPTH]; /* The data stack */
CELL address[ADDRESSES]; /* The address stack */
CELL memory[IMAGE_SIZE + 1]; /* The memory for the image */
#define TOS data[sp] /* Shortcut for top item on stack */
#define NOS data[sp-1] /* Shortcut for second item on stack */
#define TORS address[rp] /* Shortcut for top item on address stack */
#include "prototypes.h"
void loadEmbeddedImage(char *arg);
/*---------------------------------------------------------------------
Populate The I/O Device Tables
---------------------------------------------------------------------*/
typedef void (*Handler)(void);
Handler IO_deviceHandlers[NUM_DEVICES + 1] = {
io_output_handler,
io_keyboard_handler,
io_filesystem_handler,
io_floatingpoint_handler,
io_scripting_handler,
io_unix_handler,
io_clock_handler,
io_image,
io_random,
};
Handler IO_queryHandlers[NUM_DEVICES + 1] = {
io_output_query,
io_keyboard_query,
io_filesystem_query,
io_floatingpoint_query,
io_scripting_query,
io_unix_query,
io_clock_query,
io_image_query,
io_random_query,
};
/*---------------------------------------------------------------------
Variables Related To Image Introspection
---------------------------------------------------------------------*/
CELL Compiler;
CELL Dictionary;
CELL NotFound;
CELL interpret;
/*---------------------------------------------------------------------
Embed The Image
---------------------------------------------------------------------*/
#include "retro-image.c"
#include "bsd-strl.c"
/*---------------------------------------------------------------------
Global Variables
---------------------------------------------------------------------*/
char string_data[8192];
char **sys_argv;
int sys_argc;
int silence_input;
/*=====================================================================*/
/*---------------------------------------------------------------------
Now on to I/O and extensions!
RRE provides a lot of additional functionality over the base RETRO
system. First up is support for files.
The RRE file model is intended to be similar to that of the standard
C libraries and wraps fopen(), fclose(), etc.
---------------------------------------------------------------------*/
void io_output_handler() {
putc(stack_pop(), stdout);
fflush(stdout);
}
void io_output_query() {
stack_push(0);
stack_push(0);
}
/*=====================================================================*/
void io_keyboard_handler() {
stack_push(getc(stdin));
if (TOS == 127) TOS = 8;
}
void io_keyboard_query() {
stack_push(0);
stack_push(1);
}
/*=====================================================================*/
/*---------------------------------------------------------------------
Scripting Support
---------------------------------------------------------------------*/
void scripting_arg() {
CELL a, b;
a = stack_pop();
b = stack_pop();
stack_push(string_inject(sys_argv[a + 1], b));
}
void scripting_arg_count() {
stack_push(sys_argc - 1);
}
void scripting_include() {
include_file(string_extract(stack_pop()), 0);
}
void scripting_name() {
stack_push(string_inject(sys_argv[0], stack_pop()));
}
Handler ScriptingActions[] = {
scripting_arg_count,
scripting_arg,
scripting_include,
scripting_name
};
void io_scripting_query() {
stack_push(0);
stack_push(9);
}
void io_scripting_handler() {
ScriptingActions[stack_pop()]();
}
/*=====================================================================*/
#include "dev-image.c"
#include "dev-rng.c"
#include "dev-floatingpoint.c"
#include "dev-files.c"
#include "dev-unix.c"
#include "dev-clock.c"
/*=====================================================================*/
/*=====================================================================*/
/*---------------------------------------------------------------------
With these out of the way, I implement `execute`, which takes an
address and runs the code at it. This has a couple of interesting
bits.
This will also exit if the address stack depth is zero (meaning that
the word being run, and it's dependencies) are finished.
---------------------------------------------------------------------*/
void rre_execute(CELL cell, int silent) {
CELL a, b, token;
CELL opcode;
silence_input = silent;
rp = 1;
ip = cell;
token = TIB;
while (ip < IMAGE_SIZE) {
if (ip == NotFound) {
printf("\nERROR: Word Not Found: ");
printf("`%s`\n\n", string_extract(token));
}
if (ip == interpret) {
token = TOS;
}
opcode = memory[ip];
if (ngaValidatePackedOpcodes(opcode) != 0) {
ngaProcessPackedOpcodes(opcode);
} else {
printf("Invalid instruction!\n");
printf("At %d, opcode %d\n", ip, opcode);
exit(1);
}
if (sp < 0 || sp > STACK_DEPTH) {
printf("\nStack Limits Exceeded!\n");
printf("At %d, opcode %d\n", ip, opcode);
exit(1);
}
ip++;
if (rp == 0)
ip = IMAGE_SIZE;
}
}
/*---------------------------------------------------------------------
RETRO's `interpret` word expects a token on the stack. This next
function copies a token to the `TIB` (text input buffer) and then
calls `interpret` to process it.
---------------------------------------------------------------------*/
void rre_evaluate(char *s, int silent) {
if (strlen(s) == 0) return;
update_rx();
string_inject(s, TIB);
stack_push(TIB);
rre_execute(interpret, silent);
}
/*---------------------------------------------------------------------
`read_token` reads a token from the specified file. It will stop on
a whitespace or newline. It also tries to handle backspaces, though
the success of this depends on how your terminal is configured.
---------------------------------------------------------------------*/
int not_eol(int ch) {
return (ch != 10) && (ch != 13) && (ch != 32) && (ch != EOF) && (ch != 0);
}
void read_token(FILE *file, char *token_buffer, int echo) {
int ch = getc(file);
int count = 0;
if (echo != 0)
putchar(ch);
while (not_eol(ch))
{
if ((ch == 8 || ch == 127) && count > 0) {
count--;
if (echo != 0) {
putchar(8);
putchar(32);
putchar(8);
}
} else {
token_buffer[count++] = ch;
}
ch = getc(file);
if (echo != 0)
putchar(ch);
}
token_buffer[count] = '\0';
}
/*---------------------------------------------------------------------
Display the Stack Contents
---------------------------------------------------------------------*/
void dump_stack() {
CELL i;
if (sp == 0) return;
printf("\nStack: ");
for (i = 1; i <= sp; i++) {
if (i == sp)
printf("[ TOS: %d ]", data[i]);
else
printf("%d ", data[i]);
}
printf("\n");
}
/*---------------------------------------------------------------------
RRE is primarily intended to be used in a batch or scripting model.
The `include_file()` function will be used to read the code in the
file, evaluating it as encountered.
I enforce a literate model, with code in fenced blocks. E.g.,
# This is a test
Display "Hello, World!"
~~~
'Hello,_World! puts nl
~~~
RRE will ignore anything outside the `~~~` blocks. To identify if the
current token is the start or end of a block, I provide a `fenced()`
function.
---------------------------------------------------------------------*/
int fenced(char *s)
{
int a = strcmp(s, "```");
int b = strcmp(s, "~~~");
if (a == 0) return 2;
if (b == 0) return 1;
return 0;
}
/*---------------------------------------------------------------------
And now for the actual `include_file()` function.
---------------------------------------------------------------------*/
void include_file(char *fname, int run_tests) {
int inBlock = 0; /* Tracks status of in/out of block */
char source[64 * 1024]; /* Line buffer [about 64K] */
char fence[4]; /* Used with `fenced()` */
FILE *fp; /* Open the file. If not found, */
fp = fopen(fname, "r"); /* exit. */
if (fp == NULL)
return;
while (!feof(fp)) /* Loop through the file */
{
read_token(fp, source, 0);
strncpy(fence, source, 3); /* Copy the first three characters */
fence[3] = '\0'; /* into `fence` to see if we are in */
if (fenced(fence) > 0) { /* a code block. */
if (fenced(fence) == 2 && run_tests == 0) {
} else {
if (inBlock == 0)
inBlock = 1;
else
inBlock = 0;
}
} else {
if (inBlock == 1) /* If we are, evaluate token */
rre_evaluate(source, -1);
}
}
fclose(fp);
}
/*---------------------------------------------------------------------
`help()` displays a summary of the command line arguments RRE allows.
This is invoked using `rre -h`
---------------------------------------------------------------------*/
void help(char *exename) {
printf("Scripting Usage: %s filename\n\n", exename);
printf("Interactive Usage: %s [-h] [-i[,fs]] [-s] [-f filename] [-t]\n\n", exename);
printf("Valid Arguments:\n\n");
printf(" -h\n");
printf(" Display this help text\n");
printf(" -i\n");
printf(" Launches in interactive mode (line buffered)\n");
printf(" -i,fs\n");
printf(" Launches in interactive mode (character buffered, full screen)\n");
printf(" -s\n");
printf(" Suppress the 'ok' prompt and keyboard echo in interactive mode\n");
printf(" -f filename\n");
printf(" Run the contents of the specified file\n");
printf(" -u filename\n");
printf(" Use the image in the specified file instead of the internal one\n");
printf(" -t\n");
printf(" Run tests (in ``` blocks) in any loaded files\n\n");
}
/*---------------------------------------------------------------------
`initialize()` sets up Nga and loads the image (from the array in
`image.c`) to memory.
---------------------------------------------------------------------*/
void initialize() {
CELL i;
ngaPrepare();
for (i = 0; i < ngaImageCells; i++)
memory[i] = ngaImage[i];
update_rx();
}
/*---------------------------------------------------------------------
`arg_is()` exists to aid in readability. It compares the first actual
command line argument to a string and returns a boolean flag.
---------------------------------------------------------------------*/
int arg_is(char *argv, char *t) {
return strcmp(argv, t) == 0;
}
/*---------------------------------------------------------------------
Main Entry Point
---------------------------------------------------------------------*/
enum flags {
FLAG_HELP, FLAG_RUN_TESTS, FLAG_INCLUDE, FLAG_INTERACTIVE, FLAG_SILENT,
FLAG_FULLSCREEN
};
int main(int argc, char **argv) {
sys_argc = argc; /* Point the global argc and */
sys_argv = argv; /* argv to the actual ones */
ngaPrepare();
loadEmbeddedImage(argv[0]);
update_rx();
rre_execute(0, 0);
exit(0);
}
/*---------------------------------------------------------------------
Interfacing With The Image
---------------------------------------------------------------------*/
/*---------------------------------------------------------------------
Stack push/pop is easy. I could avoid these, but it aids in keeping
the code readable, so it's worth the slight overhead.
---------------------------------------------------------------------*/
CELL stack_pop() {
sp--;
if (sp < 0) {
printf("Data stack underflow.\n");
exit(1);
}
return data[sp + 1];
}
void stack_push(CELL value) {
sp++;
if (sp >= STACK_DEPTH) {
printf("Data stack overflow.\n");
exit(1);
}
data[sp] = value;
}
/*---------------------------------------------------------------------
Strings are next. RETRO uses C-style NULL terminated strings. So I
can easily inject or extract a string. Injection iterates over the
string, copying it into the image. This also takes care to ensure
that the NULL terminator is added.
---------------------------------------------------------------------*/
CELL string_inject(char *str, CELL buffer) {
CELL m, i;
if (!str) {
memory[buffer] = 0;
return 0;
}
m = strlen(str);
i = 0;
while (m > 0) {
memory[buffer + i] = (CELL)str[i];
memory[buffer + i + 1] = 0;
m--; i++;
}
return buffer;
}
/*---------------------------------------------------------------------
Extracting a string is similar, but I have to iterate over the VM
memory instead of a C string and copy the charaters into a buffer.
This uses a static buffer (`string_data`) as I prefer to avoid using
`malloc()`.
---------------------------------------------------------------------*/
char *string_extract(CELL at) {
CELL starting = at;
CELL i = 0;
while(memory[starting] && i < 8192)
string_data[i++] = (char)memory[starting++];
string_data[i] = 0;
return (char *)string_data;
}
/*---------------------------------------------------------------------
Continuing along, I now define functions to access the dictionary.
RETRO's dictionary is a linked list. Each entry is setup like:
0000 Link to previous entry (NULL if this is the root entry)
0001 Pointer to definition start
0002 Pointer to class handler
0003 Start of a NULL terminated string with the word name
First, functions to access each field. The offsets were defineed at
the start of the file.
---------------------------------------------------------------------*/
CELL d_link(CELL dt) {
return dt + D_OFFSET_LINK;
}
CELL d_xt(CELL dt) {
return dt + D_OFFSET_XT;
}
CELL d_class(CELL dt) {
return dt + D_OFFSET_CLASS;
}
CELL d_name(CELL dt) {
return dt + D_OFFSET_NAME;
}
/*---------------------------------------------------------------------
Next, a more complext word. This will walk through the entries to
find one with a name that matches the specified name. This is *slow*,
but works ok unless you have a really large dictionary. (I've not
run into issues with this in practice).
---------------------------------------------------------------------*/
CELL d_lookup(CELL Dictionary, char *name) {
CELL dt = 0;
CELL i = Dictionary;
char *dname;
while (memory[i] != 0 && i != 0) {
dname = string_extract(d_name(i));
if (strcmp(dname, name) == 0) {
dt = i;
i = 0;
} else {
i = memory[i];
}
}
return dt;
}
/*---------------------------------------------------------------------
My last dictionary related word returns the `xt` pointer for a word.
This is used to help keep various important bits up to date.
---------------------------------------------------------------------*/
CELL d_xt_for(char *Name, CELL Dictionary) {
return memory[d_xt(d_lookup(Dictionary, Name))];
}
/*---------------------------------------------------------------------
This interface tracks a few words and variables in the image. These
are:
Dictionary - the latest dictionary header
NotFound - called when a word is not found
interpret - the heart of the interpreter/compiler
I have to call this periodically, as the Dictionary will change as
new words are defined, and the user might write a new error handler
or interpreter.
---------------------------------------------------------------------*/
void update_rx() {
Dictionary = memory[2];
interpret = d_xt_for("interpret", Dictionary);
NotFound = d_xt_for("err:notfound", Dictionary);
Compiler = d_xt_for("Compiler", Compiler);
}
/*=====================================================================*/
/*---------------------------------------------------------------------
Instruction Processor
---------------------------------------------------------------------*/
enum vm_opcode {
VM_NOP, VM_LIT, VM_DUP, VM_DROP, VM_SWAP, VM_PUSH, VM_POP,
VM_JUMP, VM_CALL, VM_CCALL, VM_RETURN, VM_EQ, VM_NEQ, VM_LT,
VM_GT, VM_FETCH, VM_STORE, VM_ADD, VM_SUB, VM_MUL, VM_DIVMOD,
VM_AND, VM_OR, VM_XOR, VM_SHIFT, VM_ZRET, VM_HALT, VM_IE,
VM_IQ, VM_II
};
#define NUM_OPS VM_II + 1
CELL ngaLoadImage(char *imageFile) {
FILE *fp;
CELL imageSize;
long fileLen;
CELL i;
if ((fp = fopen(imageFile, "rb")) != NULL) {
/* Determine length (in cells) */
fseek(fp, 0, SEEK_END);
fileLen = ftell(fp) / sizeof(CELL);
if (fileLen > IMAGE_SIZE) {
fclose(fp);
printf("Image is larger than alloted space!\n");
exit(1);
}
rewind(fp);
/* Read the file into memory */
imageSize = fread(&memory, sizeof(CELL), fileLen, fp);
fclose(fp);
}
else {
for (i = 0; i < ngaImageCells; i++)
memory[i] = ngaImage[i];
imageSize = i;
}
return imageSize;
}
void ngaPrepare() {
ip = sp = rp = 0;
for (ip = 0; ip < IMAGE_SIZE; ip++)
memory[ip] = VM_NOP;
for (ip = 0; ip < STACK_DEPTH; ip++)
data[ip] = 0;
for (ip = 0; ip < ADDRESSES; ip++)
address[ip] = 0;
}
void inst_nop() {
}
void inst_lit() {
sp++;
ip++;
TOS = memory[ip];
}
void inst_dup() {
sp++;
data[sp] = NOS;
}
void inst_drop() {
data[sp] = 0;
if (--sp < 0)
ip = IMAGE_SIZE;
}
void inst_swap() {
CELL a;
a = TOS;
TOS = NOS;
NOS = a;
}
void inst_push() {
rp++;
TORS = TOS;
inst_drop();
}
void inst_pop() {
sp++;
TOS = TORS;
rp--;
}
void inst_jump() {
ip = TOS - 1;
inst_drop();
}
void inst_call() {
rp++;
TORS = ip;
ip = TOS - 1;
inst_drop();
}
void inst_ccall() {
CELL a, b;
a = TOS; inst_drop(); /* False */
b = TOS; inst_drop(); /* Flag */
if (b != 0) {
rp++;
TORS = ip;
ip = a - 1;
}
}
void inst_return() {
ip = TORS;
rp--;
}
void inst_eq() {
NOS = (NOS == TOS) ? -1 : 0;
inst_drop();
}
void inst_neq() {
NOS = (NOS != TOS) ? -1 : 0;
inst_drop();
}
void inst_lt() {
NOS = (NOS < TOS) ? -1 : 0;
inst_drop();
}
void inst_gt() {
NOS = (NOS > TOS) ? -1 : 0;
inst_drop();
}
void inst_fetch() {
switch (TOS) {
case -1: TOS = sp - 1; break;
case -2: TOS = rp; break;
case -3: TOS = IMAGE_SIZE; break;
case -4: TOS = CELL_MIN; break;
case -5: TOS = CELL_MAX; break;
default: TOS = memory[TOS]; break;
}
}
void inst_store() {
if (TOS <= IMAGE_SIZE && TOS >= 0) {
memory[TOS] = NOS;
inst_drop();
inst_drop();
} else {
ip = IMAGE_SIZE;
}
}
void inst_add() {
NOS += TOS;
inst_drop();
}
void inst_sub() {
NOS -= TOS;
inst_drop();
}
void inst_mul() {
NOS *= TOS;
inst_drop();
}
void inst_divmod() {
CELL a, b;
a = TOS;
b = NOS;
TOS = b / a;
NOS = b % a;
}
void inst_and() {
NOS = TOS & NOS;
inst_drop();
}
void inst_or() {
NOS = TOS | NOS;
inst_drop();
}
void inst_xor() {
NOS = TOS ^ NOS;
inst_drop();
}
void inst_shift() {
CELL y = TOS;
CELL x = NOS;
if (TOS < 0)
NOS = NOS << (TOS * -1);
else {
if (x < 0 && y > 0)
NOS = x >> y | ~(~0U >> y);
else
NOS = x >> y;
}
inst_drop();
}
void inst_zret() {
if (TOS == 0) {
inst_drop();
ip = TORS;
rp--;
}
}
void inst_halt() {
ip = IMAGE_SIZE;
}
void inst_ie() {
sp++;
TOS = NUM_DEVICES;
}
void inst_iq() {
CELL Device = TOS;
inst_drop();
IO_queryHandlers[Device]();
}
void inst_ii() {
CELL Device = TOS;
inst_drop();
IO_deviceHandlers[Device]();
}
Handler instructions[NUM_OPS] = {
inst_nop, inst_lit, inst_dup, inst_drop, inst_swap, inst_push, inst_pop,
inst_jump, inst_call, inst_ccall, inst_return, inst_eq, inst_neq, inst_lt,
inst_gt, inst_fetch, inst_store, inst_add, inst_sub, inst_mul, inst_divmod,
inst_and, inst_or, inst_xor, inst_shift, inst_zret, inst_halt, inst_ie,
inst_iq, inst_ii
};
void ngaProcessOpcode(CELL opcode) {
if (opcode != 0)
instructions[opcode]();
}
int ngaValidatePackedOpcodes(CELL opcode) {
CELL raw = opcode;
CELL current;
int valid = -1;
int i;
for (i = 0; i < 4; i++) {
current = raw & 0xFF;
if (!(current >= 0 && current <= 29))
valid = 0;
raw = raw >> 8;
}
return valid;
}
void ngaProcessPackedOpcodes(CELL opcode) {
CELL raw = opcode;
int i;
for (i = 0; i < 4; i++) {
ngaProcessOpcode(raw & 0xFF);
raw = raw >> 8;
}
}
/*=====================================================================*/
#pragma pack(push,1)
#pragma pack(pop)
#define EI_NIDENT 16
/* 32-bit ELF base types. */
typedef unsigned int Elf32_Addr;
typedef unsigned short Elf32_Half;
typedef unsigned int Elf32_Off;
typedef signed int Elf32_Sword;
typedef unsigned int Elf32_Word;
/* 64-bit ELF base types. */
typedef unsigned long long Elf64_Addr;
typedef unsigned short Elf64_Half;
typedef signed short Elf64_SHalf;
typedef unsigned long long Elf64_Off;
typedef signed int Elf64_Sword;
typedef unsigned int Elf64_Word;
typedef unsigned long long Elf64_Xword;
typedef signed long long Elf64_Sxword;
typedef struct elf32_hdr{
unsigned char e_ident[EI_NIDENT];
Elf32_Half e_type;
Elf32_Half e_machine;
Elf32_Word e_version;
Elf32_Addr e_entry; /* Entry point */
Elf32_Off e_phoff;
Elf32_Off e_shoff;
Elf32_Word e_flags;
Elf32_Half e_ehsize;
Elf32_Half e_phentsize;
Elf32_Half e_phnum;
Elf32_Half e_shentsize;
Elf32_Half e_shnum;
Elf32_Half e_shstrndx;
} Elf32_Ehdr;
typedef struct elf32_shdr {
Elf32_Word sh_name;
Elf32_Word sh_type;
Elf32_Word sh_flags;
Elf32_Addr sh_addr;
Elf32_Off sh_offset;
Elf32_Word sh_size;
Elf32_Word sh_link;
Elf32_Word sh_info;
Elf32_Word sh_addralign;
Elf32_Word sh_entsize;
} Elf32_Shdr;
typedef struct elf64_hdr {
unsigned char e_ident[EI_NIDENT]; /* ELF "magic number" */
Elf64_Half e_type;
Elf64_Half e_machine;
Elf64_Word e_version;
Elf64_Addr e_entry; /* Entry point virtual address */
Elf64_Off e_phoff; /* Program header table file offset */
Elf64_Off e_shoff; /* Section header table file offset */
Elf64_Word e_flags;
Elf64_Half e_ehsize;
Elf64_Half e_phentsize;
Elf64_Half e_phnum;
Elf64_Half e_shentsize;
Elf64_Half e_shnum;
Elf64_Half e_shstrndx;
} Elf64_Ehdr;
typedef struct elf64_shdr {
Elf64_Word sh_name; /* Section name, index in string tbl */
Elf64_Word sh_type; /* Type of section */
Elf64_Xword sh_flags; /* Miscellaneous section attributes */
Elf64_Addr sh_addr; /* Section virtual addr at execution */
Elf64_Off sh_offset; /* Section file offset */
Elf64_Xword sh_size; /* Size of section in bytes */
Elf64_Word sh_link; /* Index of another section */
Elf64_Word sh_info; /* Additional section information */
Elf64_Xword sh_addralign; /* Section alignment */
Elf64_Xword sh_entsize; /* Entry size if section holds table */
} Elf64_Shdr;
void loadEmbeddedImage(char *arg) {
FILE* ElfFile = NULL;
char* SectNames = NULL;
Elf64_Ehdr elfHdr;
Elf64_Shdr sectHdr;
uint32_t idx;
if((ElfFile = fopen(arg, "r")) == NULL) {
perror("[E] Error opening file:");
exit(1);
}
fread(&elfHdr, 1, sizeof(Elf64_Ehdr), ElfFile);
fseek(ElfFile, elfHdr.e_shoff + elfHdr.e_shstrndx * sizeof(sectHdr), SEEK_SET);
fread(&sectHdr, 1, sizeof(sectHdr), ElfFile);
SectNames = malloc(sectHdr.sh_size);
fseek(ElfFile, sectHdr.sh_offset, SEEK_SET);
fread(SectNames, 1, sectHdr.sh_size, ElfFile);
int a;
for (idx = 0; idx < elfHdr.e_shnum; idx++)
{
const char* name = "";
fseek(ElfFile, elfHdr.e_shoff + idx * sizeof(sectHdr), SEEK_SET);
fread(&sectHdr, 1, sizeof(sectHdr), ElfFile);
name = SectNames + sectHdr.sh_name;
if (strcmp(name, ".ngaImage") == 0) {
fseek(ElfFile, sectHdr.sh_offset, SEEK_SET);
for (int i = 0; i < (int)sectHdr.sh_size; i++) {
fread(&a, 1, sizeof(int), ElfFile);
memory[i] = a;
}
}
}
return;
}