
Encoding floating point numbers to
shorter integers

Kiyoshi Yoneda
Fukuoka University

yoneda@fukuoka-u.ac.jp

Charles Childers
ForthWorks

crc@forthworks.com

Draft May 23, 2018

Abstract

A scheme for encoding floating point numbers to shorter integers is pro-
posed and evaluated. The scheme retains a high accuracy near zero while
retaining a low relative error away from zero. To encode 64-bit floats to
32-bit integers, the dynamic range can be taken to be from 10−9 to 109,
with a 32-bit accuracy near zero and a 16-bit accuracy near 1. The dynamic
range and the accuracy may be adjusted by a trade-off parameter. The mo-
tivation for devising this scheme comes from deployment of minimal virtual
machines for embedded systems programming.

MSC codes

65 Numerical Analysis, 65Y04 Algorithms for computer arithmetic, etc.

1 Introduction

In numerical computation numbers are normally stored in a floating point
(FP) format ready to be processed by a floating point unit (FPU). However,
the practice is not always economical in resource-constrained computation.
This report proposes a way to encode FP numbers, occupying typically 64
bits or more, to shorter integers of typically 32 bits or less. The motivation
comes from virtual machine (VM) simplification.

The proposal is to encode the FP number to its square root. Con-
sider a floating point (FP) number with a single decimal digit mantissa,
say 1e-2 = 0.01, to be stored in a memory space that permits only one
fractional digit. If fixed point representation is employed, by rounding 0.01
to a single fractional digit, its approximate is stored as 0.0 . On the other

1

hand, by encoding the FP number to its square root, 0.01 may be stored as
0.01

1
2 = 0.1 . Converting the stored numbers back to FP, the fixed point

version is decoded to 0e-2 = 0.00 , while the square root version is decoded
more precisely to 0.12 = 1e-2 = 0.01 . This report exploits the above
property for FP encoding and decoding conversion (FPC) aiming to fit FP
numbers to integers of shorter or equal length.

Embedded programming delegates decisions to resource-constrained de-
vices. Consider for instance vending machines. Each machine has a mi-
crocomputer to control basic tasks of receiving the payment in a variety of
forms and releasing the chosen merchandise. If a machine were to sell per-
ishable goods it ought to be able to change the selling price over time taking
into account the validity of goods in stock and expected demand until next
inventory update. Autonomy is better than remote control to avoid com-
munication bottleneck and for quick response based on information local to
the machine. To make decisions rationally rather than by rule-based reflex,
numerical computation is indispensable, for which FP is convenient.

The problem of FPC arises in deployment of minimal VMs designed to
operate over short memory cells. It is a standard strategy to use VMs to
secure software portability spanning various hardware alternatives. This is
important for systems built with inexpensive microcontrollers which come
in a large variety of architectures.

An application to be built on a VM involves numerical calculation re-
quiring a dynamic range wider than 32-bit fixed point numbers can handle.
An obvious solution to keep the VM simple is to build it to operate uni-
formly over 64-bit cells to accommodate all basic data types, integers and
FP numbers alike. This keeps software simple but is expensive in terms of
memory space.

The VM adopted, called Nga (Childers, 2018), is in the style of a minimal
instruction set computer, which is an indication of high portability. The VM
comes without input/output (I/O) instructions; a programming language
called Retro built on top of Nga interfaces between the VM and applications
providing I/O and other functionalities including FP. The Retro processor,
which has an Nga image built in, is deemed small enough for resource-
constrained computation.

The numbers Nga operates upon are almost exclusively signed integers:
all FP numbers live confined on a small FP stack in Retro; they cannot be
stored in regular integer-size cells. To handle FP directly using Nga a new
layer of software such as FP variables and arrays would have to be built as
a part of Retro. That would increase the software complexity as well as its
size, not to mention the work involved.

Fitting FP numbers to the integer-size cells seemed like a better solution
because by adding a FPC, Retro’s integrity with Nga is intact while numer-
ical calculation can be carried out in a FPU external to the VM, provided

2

that the inevitable loss in accuracy, taking place whenever a float is encoded
to integer, remains tolerable. Figure 1 is a conceptual diagram.

Figure 1: VM and FPU

In this report we assume that FP numbers are encoded into shorter
integer-size cells:

FP : consists typically of 64 bits, with 56-bit mantissa and 8-bit exponent,
but may be bigger or smaller.

Cell : typically 32 bits, but often smaller.
FPU : available either as hardware or as software library including conver-

sion of integer to FP and back.

Desiderata for a FPC are:

Individual : encoding and decoding should depend only on the number
being converted without referring to other numbers in the data set.

Fast : involves no slow functions.
High accuracy near zero : retains a high accuracy around the origin.

The FPC proposed herein exploits the last entry of the list which permits
lower accuracy away from the origin. This is reasonable considering that
most numbers appear near zero rather than towards the end of the dynamic
range.

The remainder of this report is organized as follows. Section 2 considers
conditions FPC should satisfy, including a formalization of “high accuracy
near zero.” Section 3 proposes a new FPC scheme satisfying the condi-
tions and examines its properties. Section 4 describes an implementation.
Section 5 concludes with an observation regarding implementation of the
method of least squares.

2 Decoding functions

To consider design alternatives for FPC it is convenient to model the FP
numbers as the reals R. The set of numbers encoded to integer-size cells is

3

modeled as

U = {−M, −(M − 1), · · · , −1, 0, 1, · · · , M − 1, M}

where M is the largest integer a cell can hold. The intention is that U
approximates R: while both U and R have a common notion of ‘≤’, U’s
understanding is coarser than R’s. Under this model the problem is to
find a pair of functors (e.g. (Leinster, 2016)) R : 〈U,≤〉 → 〈R,≤〉 and
U : 〈U,≤〉 ← 〈R,≤〉 such that

in U R
R

U
R is left adjoint to U, R a U .

This is a symbolic version of Figure 1 with ‘a’ indicating a compatibility be-
tween the dialogue channels R and U through pseudoinverse-like properties.
Whatever R does can be imitated in U preserving ‘≤’ in a rougher way by
decoding the relevant objects in U to R using R, carrying out the operations
therein, and encoding the results back to U using U: a ·b := U (R(a) ·R(b)),
log | a | := U (log |R(a) |), etc.

Now restrict the functors to monotone nondecreasing functions defined
over R symmetric with respect to the origin,

decode R : R→ R =

{
R− 3 u 7→ −R(−u)

R+ 3 u 7→ r ∈ R+ monotone nondecreasing

encode U : R→ U such that

U R

U

R

1U
U

commutes (1)

where R± are sets of nonnegative and nonpositive reals. Then to define a
function pair uniquely it suffices to specify R+ := R

∣∣R+, which is decoding
restricted to nonnegative reals, since U is R−1 on R(U), and R(u) = signu ·
R+(|u |) for u ∈ R .

There are a number of such FPC schemes in common use devised for
various purposes:

Shorter FP : as in converting from double float to single float. The down
side is that the loss of accuracy is uniform over the dynamic range
providing no full cell-size accuracy where needed.

Fixed point : treats the numbers far from the origin as saturated. It often
turns out that the dynamic range is too narrow.

Logarithmic : used in signal processing and other computation when the
speed of multiplication and division is favored over addition and sub-
traction. This is a special case of FP where the mantissa is always one.

4

The encoding and decoding are slow requiring logarithm, exponential,
and square root functions. It also needs two sign bits, one for the
number itself and the other for the exponent, which may matter when
the cell is very short.

The options are narrowed down by restricting R+ to be smooth as a
function defined over R+. Furthermore, the last desideratum “high accuracy
near zero” is interpreted to mean

d

dx
R+(x)|x=0 = 0 (2)

stating that near the origin an infinitesimal dR+(x) in the decoded range
may correspond to a real dx in the encoded domain. None of the FPC listed
above has this property.

3 The sqrt encoding

By analogy to the nilsquare infinitesimal (Bell, 2001), u2 can be taken as
R+. In this case, a 1-digit fractional encoded representation, say x = 0.2,
has a 2-digit decoded value, R(x) = 0.04; see Figure 2. The dashed line
is for R(u) = u2 and the solid line is for R(x), where x is u rounded to 1
fractional digit or x := [10u]/10 in which [] is for rounding to the nearest
integer.

The FPC scheme proposed is its parameterized version

R+(u; s) := s2u2 (3)

where s is held constant throughout an application. This satisfies (2).

U+(r; s) :=
[
s−1r

1
2

]
. (4)

We are not aware of this FPC having been mentioned. We call this FPC
the sqrt encoding.

This FPC is optimal in the sense that if the “simplest” nontrivial solution
to (2) is accepted to be dR+(x)/dx = x, (3) is the only solution.

In the rest of this section, s := 10−4 throughout so that at u = s, the
decoded R+(s) = 1 has a four decimal digit accuracy while at u = 0 the
accuracy is 8 decimal digits.

Table 1 shows FPC for r = 10n, n integer, so 100
1
2 = 10 and 10

1
2 ≈

3.162278 alternate in the columns for u with decimal points shifted. The op-
erator ‘◦’ is for function composition, from right to left. The table illustrates
(1), that decoding and encoding back and forth does not change the origi-
nal encoded integer. The error := (R ◦ U)(r)− r and relative error :=
error(r)/r, r ∈ R+, are shown in Figures 3 and 4. Together they illustrate
the trade-off between accuracy and dynamic range.

5

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

Encoded

D
e
c
o
d
e
d

Figure 2: R(u) = u2

4 Implementation

An implementation has to attend to the details left out of the model, includ-
ing special symbols ±∞ and Not-a-Number, NaN. Currently NaN in float is
encoded as the least integer a cell can hold. The decoding function R needs
be incremented with −M − 1 7→ NaN and ±M 7→ ±∞; U must be adjusted
accordingly.

6

Table 1: U R−→ R U−→ U is identity on U

r
U7→ u

R7→ R(u)
U7→ (U ◦R)(u)

0 0 0 0

1e-09 0 0 0

1e-08 1 1e-08 1

1e-07 3 9e-08 3

1e-06 10 1e-06 10

1e-05 32 1.024e-05 32

1e-04 100 1e-04 100

0.001 316 0.00099856 316

0.01 1,000 0.01 1,000

0.1 3,162 0.09998244 3,162

1 10,000 1 10,000

10 31,623 10.00014 31,623

100 100,000 100 100,000

1000 316,228 1000.001 316,228

1e+05 3,162,278 1e+05 3,162,278

1e+06 10,000,000 1e+06 10,000,000

1e+07 31,622,777 1e+07 31,622,777

1e+08 100,000,000 1e+08 100,000,000

1e+09 316,227,766 1e+09 316,227,766

1e+10 1,000,000,000 1e+10 1,000,000,000

A program has been written for Retro 12 (Childers, 2018), a modern
Forth dialect, available as a part of the language source code. Unlike the
example in Section 3, the implementation is for 32-bit cells with two’s com-
plement integer. As has been mentioned in Section 1, Retro had a limited
ability to deal with FP:

• operations confined to a FP stack,
• conversion to and from integer, and
• I/O.

This list has been incremented with

• encoding U and decoding R functions.

7

−0.010

−0.005

0.000

0.005

0.010

−4 −2 0 2 4

log10 r

E
rr

o
r

Figure 3: error = (R ◦ U)(r)− r, s = 10−4

5 Conclusion

The sqrt encoding of floating numbers to shorter integers has bee proposed.
Its balance between accuracy and dynamic range has been illustrated in
Figures 3 and 4, which is adjustable with the trade-off parameter s .

Recapitulating the FPC desiderata,

Individual : encoding and decoding depend only on the number being
converted, except that the trade-off parameter s needs be specified
depending on the cell size and application. For 32-bit cells it seems
practical to start with a decimal s close to 2−32/2 for convenience in
debugging, to be optimized once the application has been stabilized.

Fast : needs only square root, which is usually supported by FPU, in addi-

8

−0.010

−0.005

0.000

0.005

0.010

−4 −2 0 2 4

log10 r

R
e
la

ti
v
e
 e

rr
o
r

Figure 4: relarive error = error(r)/r, s = 10−4

tion to the basic unary and binary operations. It is useful to observe
that the sqrt encoding is particularly well-suited for the method of
least squares: to encode the square of a variable is essentially to take
the absolute value of the variable itself, dispensing with the expensive
square root operation.

High accuracy near zero : the accuracy is full cell size near zero deterio-
rating for large numbers; the relative error improves for large absolute
values.

From these observations, it would seem that the trade-off parameter s
should be related to the deviation from zero of the data to store.

9

Acknowledgments

Test code for Section 4 to build Table 1 has been written in the R lan-
guage (R Core Team, 2018). The ggplot2 (Wickham, 2009) library gener-
ated the graphs.

References

(Bell, 2001) Bell, John L. An Invitation to Smooth Infinitesimal Analy-
sis, Mathematics Department, Instituto Superior Técnico, Lisbon, May
2001.

(Childers, 2018) Childers, Charles; Nga and Retro. 2018. http://

forthworks.com/

(Leinster, 2016) Leinster,Tom; Basic Category Theory. arXiv:1612.09375
[math.CT], 2016. https://arxiv.org/pdf/1612.09375.pdf

(R Core Team, 2018) R Core Team (2018). R: A language and environment
for statistical computing. R Foundation for Statistical Computing, Vi-
enna, Austria. https://www.R-project.org/

(Wickham, 2009) Wickham, H; ggplot2: Elegant Graphics for Data Analy-
sis. Springer-Verlag New York, 2009.

10

