/*--------------------------------------------------------------------- RETRO is a personal, minimalistic forth with a pragmatic focus This implements Nga, the virtual machine at the heart of RETRO. It includes a number of I/O interfaces, extensive commentary, and has been refined by over a decade of use and development. Copyright (c) 2008 - 2019, Charles Childers Portions are based on Ngaro, which was additionally copyrighted by the following: Copyright (c) 2009 - 2010, Luke Parrish Copyright (c) 2010, Marc Simpson Copyright (c) 2010, Jay Skeer Copyright (c) 2011, Kenneth Keating ---------------------------------------------------------------------*/ /*--------------------------------------------------------------------- C Headers ---------------------------------------------------------------------*/ #include #include #include #include #include #include #include #include #include #include #include #include #include #include /*--------------------------------------------------------------------- Configuration ---------------------------------------------------------------------*/ #define CELL int32_t /* Cell size (32 bit, signed integer */ #define IMAGE_SIZE 524288 * 2 /* Amount of RAM. 12MiB by default. */ #define ADDRESSES 256 /* Depth of address stack */ #define STACK_DEPTH 256 /* Depth of data stack */ #define TIB 1025 /* Location of TIB */ #define D_OFFSET_LINK 0 /* Dictionary Format Info. Update if */ #define D_OFFSET_XT 1 /* you change the dictionary fields. */ #define D_OFFSET_CLASS 2 #define D_OFFSET_NAME 3 #define NUM_DEVICES 8 /* Set the number of I/O devices */ #define MAX_OPEN_FILES 128 #define GOPHER_MAX_FILE_SIZE (128 * 1024) + 1 /*--------------------------------------------------------------------- Image, Stack, and VM variables ---------------------------------------------------------------------*/ CELL sp, rp, ip; /* Stack & instruction pointers */ CELL data[STACK_DEPTH]; /* The data stack */ CELL address[ADDRESSES]; /* The address stack */ CELL memory[IMAGE_SIZE + 1]; /* The memory for the image */ #define TOS data[sp] /* Shortcut for top item on stack */ #define NOS data[sp-1] /* Shortcut for second item on stack */ #define TORS address[rp] /* Shortcut for top item on address stack */ /*--------------------------------------------------------------------- Function Prototypes ---------------------------------------------------------------------*/ CELL stack_pop(); void stack_push(CELL value); CELL string_inject(char *str, CELL buffer); char *string_extract(CELL at); CELL d_xt_for(char *Name, CELL Dictionary); void update_rx(); void ngaProcessPackedOpcodes(CELL opcode); int ngaValidatePackedOpcodes(CELL opcode); void include_file(char *fname, int run_tests); CELL ngaLoadImage(char *imageFile); void ngaPrepare(); void io_output_handler(); void io_output_query(); void io_keyboard_handler(); void io_keyboard_query(); void io_filesystem_query(); void io_filesystem_handler(); void io_unix_query(); void io_unix_handler(); void io_floatingpoint_query(); void io_floatingpoint_handler(); void io_gopher_query(); void io_gopher_handler(); void io_scripting_handler(); void io_scripting_query(); void io_image(); void io_image_query(); #if defined __GNU_LIBRARY__ || defined __GLIBC__ size_t strlcat(char *dst, const char *src, size_t dsize); size_t strlcpy(char *dst, const char *src, size_t dsize); #endif void loadEmbeddedImage(char *arg); /*--------------------------------------------------------------------- Populate The I/O Device Tables ---------------------------------------------------------------------*/ typedef void (*Handler)(void); Handler IO_deviceHandlers[NUM_DEVICES + 1] = { io_output_handler, io_keyboard_handler, io_filesystem_handler, io_floatingpoint_handler, io_scripting_handler, io_unix_handler, io_gopher_handler, io_image }; Handler IO_queryHandlers[NUM_DEVICES + 1] = { io_output_query, io_keyboard_query, io_filesystem_query, io_floatingpoint_query, io_scripting_query, io_unix_query, io_gopher_query, io_image_query }; /*--------------------------------------------------------------------- Variables Related To Image Introspection ---------------------------------------------------------------------*/ CELL Compiler; CELL Dictionary; CELL NotFound; CELL interpret; /*--------------------------------------------------------------------- Embed The Image ---------------------------------------------------------------------*/ #include "retro-image.c" /*--------------------------------------------------------------------- Global Variables ---------------------------------------------------------------------*/ char string_data[8192]; char **sys_argv; int sys_argc; int silence_input; /*=====================================================================*/ /*--------------------------------------------------------------------- Now on to I/O and extensions! RRE provides a lot of additional functionality over the base RETRO system. First up is support for files. The RRE file model is intended to be similar to that of the standard C libraries and wraps fopen(), fclose(), etc. ---------------------------------------------------------------------*/ void io_output_handler() { putc(stack_pop(), stdout); fflush(stdout); } void io_output_query() { stack_push(0); stack_push(0); } /*=====================================================================*/ void io_keyboard_handler() { stack_push(getc(stdin)); if (TOS == 127) TOS = 8; } void io_keyboard_query() { stack_push(0); stack_push(1); } /*=====================================================================*/ /*--------------------------------------------------------------------- Scripting Support ---------------------------------------------------------------------*/ void scripting_arg() { CELL a, b; a = stack_pop(); b = stack_pop(); stack_push(string_inject(sys_argv[a + 1], b)); } void scripting_arg_count() { stack_push(sys_argc - 1); } void scripting_include() { include_file(string_extract(stack_pop()), 0); } void scripting_name() { stack_push(string_inject(sys_argv[0], stack_pop())); } Handler ScriptingActions[] = { scripting_arg_count, scripting_arg, scripting_include, scripting_name }; void io_scripting_query() { stack_push(0); stack_push(9); } void io_scripting_handler() { ScriptingActions[stack_pop()](); } /*=====================================================================*/ /*--------------------------------------------------------------------- Implement Image Saving ---------------------------------------------------------------------*/ void io_image() { FILE *fp; char *f = string_extract(stack_pop()); if ((fp = fopen(f, "wb")) == NULL) { printf("Unable to save the image: %s!\n", f); exit(2); } fwrite(&memory, sizeof(CELL), memory[3] + 1, fp); fclose(fp); } void io_image_query() { stack_push(0); stack_push(1000); } /*=====================================================================*/ /*--------------------------------------------------------------------- With these out of the way, I implement `execute`, which takes an address and runs the code at it. This has a couple of interesting bits. This will also exit if the address stack depth is zero (meaning that the word being run, and it's dependencies) are finished. ---------------------------------------------------------------------*/ void rre_execute(CELL cell, int silent) { CELL a, b, token; CELL opcode; silence_input = silent; rp = 1; ip = cell; token = TIB; while (ip < IMAGE_SIZE) { if (ip == NotFound) { printf("\nERROR: Word Not Found: "); printf("`%s`\n\n", string_extract(token)); } if (ip == interpret) { token = TOS; } opcode = memory[ip]; if (ngaValidatePackedOpcodes(opcode) != 0) { ngaProcessPackedOpcodes(opcode); } else { printf("Invalid instruction!\n"); printf("At %d, opcode %d\n", ip, opcode); exit(1); } if (sp < 0 || sp > STACK_DEPTH) { printf("\nStack Limits Exceeded!\n"); printf("At %d, opcode %d\n", ip, opcode); exit(1); } ip++; if (rp == 0) ip = IMAGE_SIZE; } } /*--------------------------------------------------------------------- RETRO's `interpret` word expects a token on the stack. This next function copies a token to the `TIB` (text input buffer) and then calls `interpret` to process it. ---------------------------------------------------------------------*/ void rre_evaluate(char *s, int silent) { if (strlen(s) == 0) return; update_rx(); string_inject(s, TIB); stack_push(TIB); rre_execute(interpret, silent); } /*--------------------------------------------------------------------- `read_token` reads a token from the specified file. It will stop on a whitespace or newline. It also tries to handle backspaces, though the success of this depends on how your terminal is configured. ---------------------------------------------------------------------*/ int not_eol(int ch) { return (ch != 10) && (ch != 13) && (ch != 32) && (ch != EOF) && (ch != 0); } void read_token(FILE *file, char *token_buffer, int echo) { int ch = getc(file); int count = 0; if (echo != 0) putchar(ch); while (not_eol(ch)) { if ((ch == 8 || ch == 127) && count > 0) { count--; if (echo != 0) { putchar(8); putchar(32); putchar(8); } } else { token_buffer[count++] = ch; } ch = getc(file); if (echo != 0) putchar(ch); } token_buffer[count] = '\0'; } /*--------------------------------------------------------------------- Display the Stack Contents ---------------------------------------------------------------------*/ void dump_stack() { CELL i; if (sp == 0) return; printf("\nStack: "); for (i = 1; i <= sp; i++) { if (i == sp) printf("[ TOS: %d ]", data[i]); else printf("%d ", data[i]); } printf("\n"); } /*--------------------------------------------------------------------- RRE is primarily intended to be used in a batch or scripting model. The `include_file()` function will be used to read the code in the file, evaluating it as encountered. I enforce a literate model, with code in fenced blocks. E.g., # This is a test Display "Hello, World!" ~~~ 'Hello,_World! puts nl ~~~ RRE will ignore anything outside the `~~~` blocks. To identify if the current token is the start or end of a block, I provide a `fenced()` function. ---------------------------------------------------------------------*/ int fenced(char *s) { int a = strcmp(s, "```"); int b = strcmp(s, "~~~"); if (a == 0) return 2; if (b == 0) return 1; return 0; } /*--------------------------------------------------------------------- And now for the actual `include_file()` function. ---------------------------------------------------------------------*/ void include_file(char *fname, int run_tests) { int inBlock = 0; /* Tracks status of in/out of block */ char source[64 * 1024]; /* Line buffer [about 64K] */ char fence[4]; /* Used with `fenced()` */ FILE *fp; /* Open the file. If not found, */ fp = fopen(fname, "r"); /* exit. */ if (fp == NULL) return; while (!feof(fp)) /* Loop through the file */ { read_token(fp, source, 0); strncpy(fence, source, 3); /* Copy the first three characters */ fence[3] = '\0'; /* into `fence` to see if we are in */ if (fenced(fence) > 0) { /* a code block. */ if (fenced(fence) == 2 && run_tests == 0) { } else { if (inBlock == 0) inBlock = 1; else inBlock = 0; } } else { if (inBlock == 1) /* If we are, evaluate token */ rre_evaluate(source, -1); } } fclose(fp); } /*--------------------------------------------------------------------- `help()` displays a summary of the command line arguments RRE allows. This is invoked using `rre -h` ---------------------------------------------------------------------*/ void help(char *exename) { printf("Scripting Usage: %s filename\n\n", exename); printf("Interactive Usage: %s [-h] [-i[,fs]] [-s] [-f filename] [-t]\n\n", exename); printf("Valid Arguments:\n\n"); printf(" -h\n"); printf(" Display this help text\n"); printf(" -i\n"); printf(" Launches in interactive mode (line buffered)\n"); printf(" -i,fs\n"); printf(" Launches in interactive mode (character buffered, full screen)\n"); printf(" -s\n"); printf(" Suppress the 'ok' prompt and keyboard echo in interactive mode\n"); printf(" -f filename\n"); printf(" Run the contents of the specified file\n"); printf(" -u filename\n"); printf(" Use the image in the specified file instead of the internal one\n"); printf(" -t\n"); printf(" Run tests (in ``` blocks) in any loaded files\n\n"); } /*--------------------------------------------------------------------- `initialize()` sets up Nga and loads the image (from the array in `image.c`) to memory. ---------------------------------------------------------------------*/ void initialize() { CELL i; ngaPrepare(); for (i = 0; i < ngaImageCells; i++) memory[i] = ngaImage[i]; update_rx(); } /*--------------------------------------------------------------------- `arg_is()` exists to aid in readability. It compares the first actual command line argument to a string and returns a boolean flag. ---------------------------------------------------------------------*/ int arg_is(char *argv, char *t) { return strcmp(argv, t) == 0; } /*--------------------------------------------------------------------- Main Entry Point ---------------------------------------------------------------------*/ enum flags { FLAG_HELP, FLAG_RUN_TESTS, FLAG_INCLUDE, FLAG_INTERACTIVE, FLAG_SILENT, FLAG_FULLSCREEN }; int main(int argc, char **argv) { sys_argc = argc; /* Point the global argc and */ sys_argv = argv; /* argv to the actual ones */ ngaPrepare(); loadEmbeddedImage(argv[0]); update_rx(); rre_execute(0, 0); exit(0); } /*=====================================================================*/ /*--------------------------------------------------------------------- File Handling ---------------------------------------------------------------------*/ /*--------------------------------------------------------------------- I keep an array of file handles. RETRO will use the index number as its representation of the file. ---------------------------------------------------------------------*/ FILE *OpenFileHandles[MAX_OPEN_FILES]; /*--------------------------------------------------------------------- `files_get_handle()` returns a file handle, or 0 if there are no available handle slots in the array. ---------------------------------------------------------------------*/ CELL files_get_handle() { CELL i; for(i = 1; i < MAX_OPEN_FILES; i++) if (OpenFileHandles[i] == 0) return i; return 0; } /*--------------------------------------------------------------------- `file_open()` opens a file. This pulls from the RETRO data stack: - mode (number, TOS) - filename (string, NOS) Modes are: | Mode | Corresponds To | Description | | ---- | -------------- | -------------------- | | 0 | rb | Open for reading | | 1 | w | Open for writing | | 2 | a | Open for append | | 3 | rb+ | Open for read/update | The file name should be a NULL terminated string. This will attempt to open the requested file and will return a handle (index number into the `OpenFileHandles` array). ---------------------------------------------------------------------*/ void file_open() { CELL slot, mode, name; char *request; slot = files_get_handle(); mode = data[sp]; sp--; name = data[sp]; sp--; request = string_extract(name); if (slot > 0) { if (mode == 0) OpenFileHandles[slot] = fopen(request, "rb"); if (mode == 1) OpenFileHandles[slot] = fopen(request, "w"); if (mode == 2) OpenFileHandles[slot] = fopen(request, "a"); if (mode == 3) OpenFileHandles[slot] = fopen(request, "rb+"); } if (OpenFileHandles[slot] == NULL) { OpenFileHandles[slot] = 0; slot = 0; } stack_push(slot); } /*--------------------------------------------------------------------- `file_read()` reads a byte from a file. This takes a file pointer from the stack and pushes the character that was read to the stack. ---------------------------------------------------------------------*/ void file_read() { CELL slot = stack_pop(); CELL c = fgetc(OpenFileHandles[slot]); stack_push(feof(OpenFileHandles[slot]) ? 0 : c); } /*--------------------------------------------------------------------- `file_write()` writes a byte to a file. This takes a file pointer (TOS) and a byte (NOS) from the stack. It does not return any values on the stack. ---------------------------------------------------------------------*/ void file_write() { CELL slot, c, r; slot = stack_pop(); c = stack_pop(); r = fputc(c, OpenFileHandles[slot]); c = (r == EOF) ? 0 : 1; } /*--------------------------------------------------------------------- `file_close()` closes a file. This takes a file handle from the stack and does not return anything on the stack. ---------------------------------------------------------------------*/ void file_close() { fclose(OpenFileHandles[data[sp]]); OpenFileHandles[data[sp]] = 0; sp--; } /*--------------------------------------------------------------------- `file_get_position()` provides the current index into a file. This takes the file handle from the stack and returns the offset. ---------------------------------------------------------------------*/ void file_get_position() { CELL slot = stack_pop(); stack_push((CELL) ftell(OpenFileHandles[slot])); } /*--------------------------------------------------------------------- `file_set_position()` changes the current index into a file to the specified one. This takes a file handle (TOS) and new offset (NOS) from the stack. ---------------------------------------------------------------------*/ void file_set_position() { CELL slot, pos, r; slot = stack_pop(); pos = stack_pop(); r = fseek(OpenFileHandles[slot], pos, SEEK_SET); } /*--------------------------------------------------------------------- `file_get_size()` returns the size of a file, or 0 if empty. If the file is a directory, it returns -1. It takes a file handle from the stack. ---------------------------------------------------------------------*/ void file_get_size() { CELL slot, current, r, size; struct stat buffer; int status; slot = stack_pop(); status = fstat(fileno(OpenFileHandles[slot]), &buffer); if (!S_ISDIR(buffer.st_mode)) { current = ftell(OpenFileHandles[slot]); r = fseek(OpenFileHandles[slot], 0, SEEK_END); size = ftell(OpenFileHandles[slot]); fseek(OpenFileHandles[slot], current, SEEK_SET); } else { r = -1; } stack_push((r == 0) ? size : 0); } /*--------------------------------------------------------------------- `file_delete()` removes a file. This takes a file name (as a string) from the stack. ---------------------------------------------------------------------*/ void file_delete() { char *request; CELL name = data[sp]; sp--; CELL result; request = string_extract(name); result = (unlink(request) == 0) ? -1 : 0; } /*--------------------------------------------------------------------- `file_flush()` flushes any pending writes to disk. This takes a file handle from the stack. ---------------------------------------------------------------------*/ void file_flush() { CELL slot; slot = stack_pop(); fflush(OpenFileHandles[slot]); } Handler FileActions[10] = { file_open, file_close, file_read, file_write, file_get_position, file_set_position, file_get_size, file_delete, file_flush }; void io_filesystem_query() { stack_push(0); stack_push(4); } void io_filesystem_handler() { FileActions[stack_pop()](); } /*=====================================================================*/ /*--------------------------------------------------------------------- Floating Point ---------------------------------------------------------------------*/ /*--------------------------------------------------------------------- I have a stack of floating point values ("floats") and a stack pointer (`fsp`). ---------------------------------------------------------------------*/ double Floats[8192]; CELL fsp; double AFloats[8192]; CELL afsp; /*--------------------------------------------------------------------- The first two functions push a float to the stack and pop a value off the stack. ---------------------------------------------------------------------*/ void float_push(double value) { fsp++; Floats[fsp] = value; } double float_pop() { fsp--; return Floats[fsp + 1]; } void float_to_alt() { afsp++; AFloats[afsp] = float_pop(); } void float_from_alt() { float_push(AFloats[afsp]); afsp--; } /*--------------------------------------------------------------------- RETRO operates on 32-bit signed integer values. This function just pops a number from the data stack, casts it to a float, and pushes it to the float stack. ---------------------------------------------------------------------*/ void float_from_number() { float_push((double)stack_pop()); } /*--------------------------------------------------------------------- To get a float from a string in the image, I provide this function. I cheat: using `atof()` takes care of the details, so I don't have to. ---------------------------------------------------------------------*/ void float_from_string() { float_push(atof(string_extract(stack_pop()))); } /*--------------------------------------------------------------------- Converting a floating point into a string is slightly more work. Here I pass it off to `snprintf()` to deal with. ---------------------------------------------------------------------*/ void float_to_string() { snprintf(string_data, 8192, "%f", float_pop()); string_inject(string_data, stack_pop()); } /*--------------------------------------------------------------------- Converting a floating point back into a standard number requires a little care due to the signed nature. This makes adjustments for the max & min value, and then casts (rounding) the float back to a normal number. ---------------------------------------------------------------------*/ void float_to_number() { double a = float_pop(); if (a > 2147483647) a = 2147483647; if (a < -2147483648) a = -2147483648; stack_push((CELL)round(a)); } /*--------------------------------------------------------------------- Now I get to define a bunch of functions that operate on floats. These provide the basic math, and wrappers around functionality in libm. ---------------------------------------------------------------------*/ void float_add() { double a = float_pop(); double b = float_pop(); float_push(a+b); } void float_sub() { double a = float_pop(); double b = float_pop(); float_push(b-a); } void float_mul() { double a = float_pop(); double b = float_pop(); float_push(a*b); } void float_div() { double a = float_pop(); double b = float_pop(); float_push(b/a); } void float_floor() { float_push(floor(float_pop())); } void float_ceil() { float_push(ceil(float_pop())); } void float_eq() { double a = float_pop(); double b = float_pop(); if (a == b) stack_push(-1); else stack_push(0); } void float_neq() { double a = float_pop(); double b = float_pop(); if (a != b) stack_push(-1); else stack_push(0); } void float_lt() { double a = float_pop(); double b = float_pop(); if (b < a) stack_push(-1); else stack_push(0); } void float_gt() { double a = float_pop(); double b = float_pop(); if (b > a) stack_push(-1); else stack_push(0); } void float_depth() { stack_push(fsp); } void float_adepth() { stack_push(afsp); } void float_dup() { double a = float_pop(); float_push(a); float_push(a); } void float_drop() { float_pop(); } void float_swap() { double a = float_pop(); double b = float_pop(); float_push(a); float_push(b); } void float_log() { double a = float_pop(); double b = float_pop(); float_push(log(b) / log(a)); } void float_sqrt() { float_push(sqrt(float_pop())); } void float_pow() { double a = float_pop(); double b = float_pop(); float_push(pow(b, a)); } void float_sin() { float_push(sin(float_pop())); } void float_cos() { float_push(cos(float_pop())); } void float_tan() { float_push(tan(float_pop())); } void float_asin() { float_push(asin(float_pop())); } void float_acos() { float_push(acos(float_pop())); } void float_atan() { float_push(atan(float_pop())); } /*--------------------------------------------------------------------- With this finally done, I implement the FPU instructions. ---------------------------------------------------------------------*/ Handler FloatHandlers[] = { float_from_number, float_from_string, float_to_number, float_to_string, float_add, float_sub, float_mul, float_div, float_floor, float_ceil, float_sqrt, float_eq, float_neq, float_lt, float_gt, float_depth, float_dup, float_drop, float_swap, float_log, float_pow, float_sin, float_tan, float_cos, float_asin, float_acos, float_atan, float_to_alt, float_from_alt, float_adepth, }; void io_floatingpoint_query() { stack_push(1); stack_push(2); } void io_floatingpoint_handler() { FloatHandlers[stack_pop()](); } /*=====================================================================*/ /*--------------------------------------------------------------------- Gopher Support ---------------------------------------------------------------------*/ /*--------------------------------------------------------------------- The first Gopher related function is `error()`, which prints an error message and exits if there is a problem. ---------------------------------------------------------------------*/ void error(const char *msg) { perror(msg); exit(0); } /*--------------------------------------------------------------------- `gopher_fetch()` is the part that does all the real work. ---------------------------------------------------------------------*/ void gopher_fetch(char *host, CELL port, char *selector, CELL dest) { int sockfd, portno, n; struct sockaddr_in serv_addr; struct hostent *server; char data[GOPHER_MAX_FILE_SIZE]; char buffer[1025]; portno = (int)port; sockfd = socket(AF_INET, SOCK_STREAM, 0); if (sockfd < 0) error("ERROR opening socket"); server = gethostbyname(host); if (server == NULL) { fprintf(stderr,"ERROR, no such host\n"); exit(0); } bzero(data, GOPHER_MAX_FILE_SIZE); bzero((char *) &serv_addr, sizeof(serv_addr)); serv_addr.sin_family = AF_INET; bcopy((char *)server->h_addr, (char *)&serv_addr.sin_addr.s_addr, server->h_length); serv_addr.sin_port = htons(portno); if (connect(sockfd, (struct sockaddr *) &serv_addr, sizeof(serv_addr)) < 0) error("ERROR connecting"); n = write(sockfd, selector, strlen(selector)); if (n < 0) error("ERROR writing to socket"); n = write(sockfd, "\n", strlen("\n")); if (n < 0) error("ERROR writing to socket"); n = 1; while (n > 0) { bzero(buffer, 1025); n = read(sockfd, buffer, 1024); strlcat(data, buffer, GOPHER_MAX_FILE_SIZE); } close(sockfd); string_inject(data, dest); stack_push(strlen(data)); } /*--------------------------------------------------------------------- The last Gopher function, `gopher_handle_request()` pulls the values needed from the stack and passes them to the `gopher_fetch()` function. This will take the following from the stack (TOS to bottom): Selector (NULL terminated string) Port (Number) Server (NULL terminated string) Buffer (Pointer to memory that will hold the received file) ---------------------------------------------------------------------*/ void gopher_handle_request() { CELL port, dest; char server[1025], selector[4097]; strlcpy(selector, string_extract(stack_pop()), 4096); port = stack_pop(); strlcpy(server, string_extract(stack_pop()), 1024); dest = stack_pop(); gopher_fetch(server, port, selector, dest); } Handler GopherActions[1] = { gopher_handle_request }; void io_gopher_query() { stack_push(0); stack_push(5); } void io_gopher_handler() { GopherActions[stack_pop()](); } /*=====================================================================*/ /*--------------------------------------------------------------------- `unix_open_pipe()` is like `file_open()`, but for pipes. This pulls from the data stack: - mode (number, TOS) - executable (string, NOS) Modes are: | Mode | Corresponds To | Description | | ---- | -------------- | -------------------- | | 0 | r | Open for reading | | 1 | w | Open for writing | | 3 | r+ | Open for read/update | The file name should be a NULL terminated string. This will attempt to open the requested file and will return a handle (index number into the `OpenFileHandles` array). Once opened, you can use the standard file words to read/write to the process. ---------------------------------------------------------------------*/ void unix_open_pipe() { CELL slot, mode, name; char *request; slot = files_get_handle(); mode = stack_pop(); name = stack_pop(); request = string_extract(name); if (slot > 0) { if (mode == 0) OpenFileHandles[slot] = popen(request, "r"); if (mode == 1) OpenFileHandles[slot] = popen(request, "w"); if (mode == 3) OpenFileHandles[slot] = popen(request, "r+"); } if (OpenFileHandles[slot] == NULL) { OpenFileHandles[slot] = 0; slot = 0; } stack_push(slot); } void unix_close_pipe() { pclose(OpenFileHandles[data[sp]]); OpenFileHandles[data[sp]] = 0; sp--; } void unix_system() { system(string_extract(stack_pop())); } void unix_fork() { stack_push(fork()); } /*--------------------------------------------------------------------- UNIX provides `execl` to execute a file, with various forms for arguments provided. RRE wraps this in several functions, one for each number of passed arguments. See the Glossary for details on what each takes from the stack. Each of these will return the error code if the execution fails. ---------------------------------------------------------------------*/ void unix_exec0() { char path[1025]; strlcpy(path, string_extract(stack_pop()), 1024); execl(path, path, (char *)0); stack_push(errno); } void unix_exec1() { char path[1025]; char arg0[1025]; strlcpy(arg0, string_extract(stack_pop()), 1024); strlcpy(path, string_extract(stack_pop()), 1024); execl(path, path, arg0, (char *)0); stack_push(errno); } void unix_exec2() { char path[1025]; char arg0[1025], arg1[1025]; strlcpy(arg1, string_extract(stack_pop()), 1024); strlcpy(arg0, string_extract(stack_pop()), 1024); strlcpy(path, string_extract(stack_pop()), 1024); execl(path, path, arg0, arg1, (char *)0); stack_push(errno); } void unix_exec3() { char path[1025]; char arg0[1025], arg1[1025], arg2[1025]; strlcpy(arg2, string_extract(stack_pop()), 1024); strlcpy(arg1, string_extract(stack_pop()), 1024); strlcpy(arg0, string_extract(stack_pop()), 1024); strlcpy(path, string_extract(stack_pop()), 1024); execl(path, path, arg0, arg1, arg2, (char *)0); stack_push(errno); } void unix_exit() { exit(stack_pop()); } void unix_getpid() { stack_push(getpid()); } void unix_wait() { CELL a; stack_push(wait(&a)); } void unix_kill() { CELL a; a = stack_pop(); kill(stack_pop(), a); } void unix_write() { CELL a, b, c; c = stack_pop(); b = stack_pop(); a = stack_pop(); write(fileno(OpenFileHandles[c]), string_extract(a), b); } void unix_chdir() { chdir(string_extract(stack_pop())); } void unix_getenv() { CELL a, b; a = stack_pop(); b = stack_pop(); string_inject(getenv(string_extract(b)), a); } void unix_putenv() { putenv(string_extract(stack_pop())); } void unix_sleep() { sleep(stack_pop()); } /*--------------------------------------------------------------------- Faster verisons of `n:put` and `s:put` ---------------------------------------------------------------------*/ void unix_io_putn() { printf("%ld", (long)stack_pop()); } void unix_io_puts() { printf("%s", string_extract(stack_pop())); } /*--------------------------------------------------------------------- Time and Date Functions ---------------------------------------------------------------------*/ void unix_time() { stack_push((CELL)time(NULL)); } void unix_time_day() { time_t t = time(NULL); stack_push((CELL)localtime(&t)->tm_mday); } void unix_time_month() { time_t t = time(NULL); stack_push((CELL)localtime(&t)->tm_mon + 1); } void unix_time_year() { time_t t = time(NULL); stack_push((CELL)localtime(&t)->tm_year + 1900); } void unix_time_hour() { time_t t = time(NULL); stack_push((CELL)localtime(&t)->tm_hour); } void unix_time_minute() { time_t t = time(NULL); stack_push((CELL)localtime(&t)->tm_min); } void unix_time_second() { time_t t = time(NULL); stack_push((CELL)localtime(&t)->tm_sec); } void unix_time_day_utc() { time_t t = time(NULL); stack_push((CELL)gmtime(&t)->tm_mday); } void unix_time_month_utc() { time_t t = time(NULL); stack_push((CELL)gmtime(&t)->tm_mon + 1); } void unix_time_year_utc() { time_t t = time(NULL); stack_push((CELL)gmtime(&t)->tm_year + 1900); } void unix_time_hour_utc() { time_t t = time(NULL); stack_push((CELL)gmtime(&t)->tm_hour); } void unix_time_minute_utc() { time_t t = time(NULL); stack_push((CELL)gmtime(&t)->tm_min); } void unix_time_second_utc() { time_t t = time(NULL); stack_push((CELL)gmtime(&t)->tm_sec); } Handler UnixActions[] = { unix_system, unix_fork, unix_exec0, unix_exec1, unix_exec2, unix_exec3, unix_exit, unix_getpid, unix_wait, unix_kill, unix_open_pipe, unix_close_pipe, unix_write, unix_chdir, unix_getenv, unix_putenv, unix_sleep, unix_io_putn, unix_io_puts, unix_time, unix_time_day, unix_time_month, unix_time_year, unix_time_hour, unix_time_minute, unix_time_second, unix_time_day_utc, unix_time_month_utc, unix_time_year_utc, unix_time_hour_utc, unix_time_minute_utc, unix_time_second_utc }; void io_unix_query() { stack_push(1); stack_push(8); } void io_unix_handler() { UnixActions[stack_pop()](); } /*=====================================================================*/ /*--------------------------------------------------------------------- Interfacing With The Image ---------------------------------------------------------------------*/ /*--------------------------------------------------------------------- Stack push/pop is easy. I could avoid these, but it aids in keeping the code readable, so it's worth the slight overhead. ---------------------------------------------------------------------*/ CELL stack_pop() { sp--; if (sp < 0) { printf("Data stack underflow.\n"); exit(1); } return data[sp + 1]; } void stack_push(CELL value) { sp++; if (sp >= STACK_DEPTH) { printf("Data stack overflow.\n"); exit(1); } data[sp] = value; } /*--------------------------------------------------------------------- Strings are next. RETRO uses C-style NULL terminated strings. So I can easily inject or extract a string. Injection iterates over the string, copying it into the image. This also takes care to ensure that the NULL terminator is added. ---------------------------------------------------------------------*/ CELL string_inject(char *str, CELL buffer) { CELL m, i; if (!str) { memory[buffer] = 0; return 0; } m = strlen(str); i = 0; while (m > 0) { memory[buffer + i] = (CELL)str[i]; memory[buffer + i + 1] = 0; m--; i++; } return buffer; } /*--------------------------------------------------------------------- Extracting a string is similar, but I have to iterate over the VM memory instead of a C string and copy the charaters into a buffer. This uses a static buffer (`string_data`) as I prefer to avoid using `malloc()`. ---------------------------------------------------------------------*/ char *string_extract(CELL at) { CELL starting = at; CELL i = 0; while(memory[starting] && i < 8192) string_data[i++] = (char)memory[starting++]; string_data[i] = 0; return (char *)string_data; } /*--------------------------------------------------------------------- Continuing along, I now define functions to access the dictionary. RETRO's dictionary is a linked list. Each entry is setup like: 0000 Link to previous entry (NULL if this is the root entry) 0001 Pointer to definition start 0002 Pointer to class handler 0003 Start of a NULL terminated string with the word name First, functions to access each field. The offsets were defineed at the start of the file. ---------------------------------------------------------------------*/ CELL d_link(CELL dt) { return dt + D_OFFSET_LINK; } CELL d_xt(CELL dt) { return dt + D_OFFSET_XT; } CELL d_class(CELL dt) { return dt + D_OFFSET_CLASS; } CELL d_name(CELL dt) { return dt + D_OFFSET_NAME; } /*--------------------------------------------------------------------- Next, a more complext word. This will walk through the entries to find one with a name that matches the specified name. This is *slow*, but works ok unless you have a really large dictionary. (I've not run into issues with this in practice). ---------------------------------------------------------------------*/ CELL d_lookup(CELL Dictionary, char *name) { CELL dt = 0; CELL i = Dictionary; char *dname; while (memory[i] != 0 && i != 0) { dname = string_extract(d_name(i)); if (strcmp(dname, name) == 0) { dt = i; i = 0; } else { i = memory[i]; } } return dt; } /*--------------------------------------------------------------------- My last dictionary related word returns the `xt` pointer for a word. This is used to help keep various important bits up to date. ---------------------------------------------------------------------*/ CELL d_xt_for(char *Name, CELL Dictionary) { return memory[d_xt(d_lookup(Dictionary, Name))]; } /*--------------------------------------------------------------------- This interface tracks a few words and variables in the image. These are: Dictionary - the latest dictionary header NotFound - called when a word is not found interpret - the heart of the interpreter/compiler I have to call this periodically, as the Dictionary will change as new words are defined, and the user might write a new error handler or interpreter. ---------------------------------------------------------------------*/ void update_rx() { Dictionary = memory[2]; interpret = d_xt_for("interpret", Dictionary); NotFound = d_xt_for("err:notfound", Dictionary); Compiler = d_xt_for("Compiler", Compiler); } /*=====================================================================*/ /*--------------------------------------------------------------------- Instruction Processor ---------------------------------------------------------------------*/ enum vm_opcode { VM_NOP, VM_LIT, VM_DUP, VM_DROP, VM_SWAP, VM_PUSH, VM_POP, VM_JUMP, VM_CALL, VM_CCALL, VM_RETURN, VM_EQ, VM_NEQ, VM_LT, VM_GT, VM_FETCH, VM_STORE, VM_ADD, VM_SUB, VM_MUL, VM_DIVMOD, VM_AND, VM_OR, VM_XOR, VM_SHIFT, VM_ZRET, VM_END, VM_IE, VM_IQ, VM_II }; #define NUM_OPS VM_II + 1 CELL ngaLoadImage(char *imageFile) { FILE *fp; CELL imageSize; long fileLen; CELL i; if ((fp = fopen(imageFile, "rb")) != NULL) { /* Determine length (in cells) */ fseek(fp, 0, SEEK_END); fileLen = ftell(fp) / sizeof(CELL); if (fileLen > IMAGE_SIZE) { fclose(fp); printf("Image is larger than alloted space!\n"); exit(1); } rewind(fp); /* Read the file into memory */ imageSize = fread(&memory, sizeof(CELL), fileLen, fp); fclose(fp); } else { for (i = 0; i < ngaImageCells; i++) memory[i] = ngaImage[i]; imageSize = i; } return imageSize; } void ngaPrepare() { ip = sp = rp = 0; for (ip = 0; ip < IMAGE_SIZE; ip++) memory[ip] = VM_NOP; for (ip = 0; ip < STACK_DEPTH; ip++) data[ip] = 0; for (ip = 0; ip < ADDRESSES; ip++) address[ip] = 0; } void inst_nop() { } void inst_lit() { sp++; ip++; TOS = memory[ip]; } void inst_dup() { sp++; data[sp] = NOS; } void inst_drop() { data[sp] = 0; if (--sp < 0) ip = IMAGE_SIZE; } void inst_swap() { CELL a; a = TOS; TOS = NOS; NOS = a; } void inst_push() { rp++; TORS = TOS; inst_drop(); } void inst_pop() { sp++; TOS = TORS; rp--; } void inst_jump() { ip = TOS - 1; inst_drop(); } void inst_call() { rp++; TORS = ip; ip = TOS - 1; inst_drop(); } void inst_ccall() { CELL a, b; a = TOS; inst_drop(); /* False */ b = TOS; inst_drop(); /* Flag */ if (b != 0) { rp++; TORS = ip; ip = a - 1; } } void inst_return() { ip = TORS; rp--; } void inst_eq() { NOS = (NOS == TOS) ? -1 : 0; inst_drop(); } void inst_neq() { NOS = (NOS != TOS) ? -1 : 0; inst_drop(); } void inst_lt() { NOS = (NOS < TOS) ? -1 : 0; inst_drop(); } void inst_gt() { NOS = (NOS > TOS) ? -1 : 0; inst_drop(); } void inst_fetch() { switch (TOS) { case -1: TOS = sp - 1; break; case -2: TOS = rp; break; case -3: TOS = IMAGE_SIZE; break; default: TOS = memory[TOS]; break; } } void inst_store() { if (TOS <= IMAGE_SIZE && TOS >= 0) { memory[TOS] = NOS; inst_drop(); inst_drop(); } else { ip = IMAGE_SIZE; } } void inst_add() { NOS += TOS; inst_drop(); } void inst_sub() { NOS -= TOS; inst_drop(); } void inst_mul() { NOS *= TOS; inst_drop(); } void inst_divmod() { CELL a, b; a = TOS; b = NOS; TOS = b / a; NOS = b % a; } void inst_and() { NOS = TOS & NOS; inst_drop(); } void inst_or() { NOS = TOS | NOS; inst_drop(); } void inst_xor() { NOS = TOS ^ NOS; inst_drop(); } void inst_shift() { CELL y = TOS; CELL x = NOS; if (TOS < 0) NOS = NOS << (TOS * -1); else { if (x < 0 && y > 0) NOS = x >> y | ~(~0U >> y); else NOS = x >> y; } inst_drop(); } void inst_zret() { if (TOS == 0) { inst_drop(); ip = TORS; rp--; } } void inst_end() { ip = IMAGE_SIZE; } void inst_ie() { sp++; TOS = NUM_DEVICES; } void inst_iq() { CELL Device = TOS; inst_drop(); IO_queryHandlers[Device](); } void inst_ii() { CELL Device = TOS; inst_drop(); IO_deviceHandlers[Device](); } Handler instructions[NUM_OPS] = { inst_nop, inst_lit, inst_dup, inst_drop, inst_swap, inst_push, inst_pop, inst_jump, inst_call, inst_ccall, inst_return, inst_eq, inst_neq, inst_lt, inst_gt, inst_fetch, inst_store, inst_add, inst_sub, inst_mul, inst_divmod, inst_and, inst_or, inst_xor, inst_shift, inst_zret, inst_end, inst_ie, inst_iq, inst_ii }; void ngaProcessOpcode(CELL opcode) { if (opcode != 0) instructions[opcode](); } int ngaValidatePackedOpcodes(CELL opcode) { CELL raw = opcode; CELL current; int valid = -1; int i; for (i = 0; i < 4; i++) { current = raw & 0xFF; if (!(current >= 0 && current <= 29)) valid = 0; raw = raw >> 8; } return valid; } void ngaProcessPackedOpcodes(CELL opcode) { CELL raw = opcode; int i; for (i = 0; i < 4; i++) { ngaProcessOpcode(raw & 0xFF); raw = raw >> 8; } } /*=====================================================================*/ /* * Copyright (c) 1998, 2015 Todd C. Miller * * Permission to use, copy, modify, and distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ #ifndef strlcat /* * Appends src to string dst of size dsize (unlike strncat, dsize is the * full size of dst, not space left). At most dsize-1 characters * will be copied. Always NUL terminates (unless dsize <= strlen(dst)). * Returns strlen(src) + MIN(dsize, strlen(initial dst)). * If retval >= dsize, truncation occurred. */ size_t strlcat(char *dst, const char *src, size_t dsize) { const char *odst = dst; const char *osrc = src; size_t n = dsize; size_t dlen; /* Find the end of dst and adjust bytes left but don't go past end. */ while (n-- != 0 && *dst != '\0') dst++; dlen = dst - odst; n = dsize - dlen; if (n-- == 0) return(dlen + strlen(src)); while (*src != '\0') { if (n != 0) { *dst++ = *src; n--; } src++; } *dst = '\0'; return(dlen + (src - osrc)); /* count does not include NUL */ } #endif #ifndef strlcpy /* * Copy string src to buffer dst of size dsize. At most dsize-1 * chars will be copied. Always NUL terminates (unless dsize == 0). * Returns strlen(src); if retval >= dsize, truncation occurred. */ size_t strlcpy(char *dst, const char *src, size_t dsize) { const char *osrc = src; size_t nleft = dsize; /* Copy as many bytes as will fit. */ if (nleft != 0) { while (--nleft != 0) { if ((*dst++ = *src++) == '\0') break; } } /* Not enough room in dst, add NUL and traverse rest of src. */ if (nleft == 0) { if (dsize != 0) *dst = '\0'; /* NUL-terminate dst */ while (*src++) ; } return(src - osrc - 1); /* count does not include NUL */ } #endif /*=====================================================================*/ #pragma pack(push,1) #pragma pack(pop) #define EI_NIDENT 16 /* 32-bit ELF base types. */ typedef unsigned int Elf32_Addr; typedef unsigned short Elf32_Half; typedef unsigned int Elf32_Off; typedef signed int Elf32_Sword; typedef unsigned int Elf32_Word; /* 64-bit ELF base types. */ typedef unsigned long long Elf64_Addr; typedef unsigned short Elf64_Half; typedef signed short Elf64_SHalf; typedef unsigned long long Elf64_Off; typedef signed int Elf64_Sword; typedef unsigned int Elf64_Word; typedef unsigned long long Elf64_Xword; typedef signed long long Elf64_Sxword; typedef struct elf32_hdr{ unsigned char e_ident[EI_NIDENT]; Elf32_Half e_type; Elf32_Half e_machine; Elf32_Word e_version; Elf32_Addr e_entry; /* Entry point */ Elf32_Off e_phoff; Elf32_Off e_shoff; Elf32_Word e_flags; Elf32_Half e_ehsize; Elf32_Half e_phentsize; Elf32_Half e_phnum; Elf32_Half e_shentsize; Elf32_Half e_shnum; Elf32_Half e_shstrndx; } Elf32_Ehdr; typedef struct elf32_shdr { Elf32_Word sh_name; Elf32_Word sh_type; Elf32_Word sh_flags; Elf32_Addr sh_addr; Elf32_Off sh_offset; Elf32_Word sh_size; Elf32_Word sh_link; Elf32_Word sh_info; Elf32_Word sh_addralign; Elf32_Word sh_entsize; } Elf32_Shdr; typedef struct elf64_hdr { unsigned char e_ident[EI_NIDENT]; /* ELF "magic number" */ Elf64_Half e_type; Elf64_Half e_machine; Elf64_Word e_version; Elf64_Addr e_entry; /* Entry point virtual address */ Elf64_Off e_phoff; /* Program header table file offset */ Elf64_Off e_shoff; /* Section header table file offset */ Elf64_Word e_flags; Elf64_Half e_ehsize; Elf64_Half e_phentsize; Elf64_Half e_phnum; Elf64_Half e_shentsize; Elf64_Half e_shnum; Elf64_Half e_shstrndx; } Elf64_Ehdr; typedef struct elf64_shdr { Elf64_Word sh_name; /* Section name, index in string tbl */ Elf64_Word sh_type; /* Type of section */ Elf64_Xword sh_flags; /* Miscellaneous section attributes */ Elf64_Addr sh_addr; /* Section virtual addr at execution */ Elf64_Off sh_offset; /* Section file offset */ Elf64_Xword sh_size; /* Size of section in bytes */ Elf64_Word sh_link; /* Index of another section */ Elf64_Word sh_info; /* Additional section information */ Elf64_Xword sh_addralign; /* Section alignment */ Elf64_Xword sh_entsize; /* Entry size if section holds table */ } Elf64_Shdr; void loadEmbeddedImage(char *arg) { FILE* ElfFile = NULL; char* SectNames = NULL; Elf64_Ehdr elfHdr; Elf64_Shdr sectHdr; uint32_t idx; if((ElfFile = fopen(arg, "r")) == NULL) { perror("[E] Error opening file:"); exit(1); } fread(&elfHdr, 1, sizeof(Elf64_Ehdr), ElfFile); fseek(ElfFile, elfHdr.e_shoff + elfHdr.e_shstrndx * sizeof(sectHdr), SEEK_SET); fread(§Hdr, 1, sizeof(sectHdr), ElfFile); SectNames = malloc(sectHdr.sh_size); fseek(ElfFile, sectHdr.sh_offset, SEEK_SET); fread(SectNames, 1, sectHdr.sh_size, ElfFile); int a; for (idx = 0; idx < elfHdr.e_shnum; idx++) { const char* name = ""; fseek(ElfFile, elfHdr.e_shoff + idx * sizeof(sectHdr), SEEK_SET); fread(§Hdr, 1, sizeof(sectHdr), ElfFile); name = SectNames + sectHdr.sh_name; if (strcmp(name, ".ngaImage") == 0) { fseek(ElfFile, sectHdr.sh_offset, SEEK_SET); for (int i = 0; i < (int)sectHdr.sh_size; i++) { fread(&a, 1, sizeof(int), ElfFile); memory[i] = a; } } } return; }