retroforth/source/interfaces/retro-compiler.c

624 lines
12 KiB
C
Raw Normal View History

/* RETRO : a personal, minimalistic forth
This interface layer will create a new binary that
bundles the RETRO virtual machine and image file.
The VM and image are embedded in this as ELF sections.
This will extract them, compile code from a file into
the image, then embed the image into the VM binary.
Due to the way this works, it requires a Unix-like OS
and the `objcopy` binary in the path.
Copyright (c) 2016 - 2019, Charles Childers
*/
#include <stdio.h>
#include <stdint.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>
#include <sys/stat.h>
#include <limits.h>
#ifndef BIT64
#define CELL int32_t
#define CELL_MIN INT_MIN + 1
#define CELL_MAX INT_MAX - 1
#else
#define CELL int64_t
#define CELL_MIN LLONG_MIN + 1
#define CELL_MAX LLONG_MAX - 1
#endif
#define IMAGE_SIZE 524288 * 8
#define ADDRESSES 2048
#define STACK_DEPTH 512
CELL sp, rp, ip;
CELL data[STACK_DEPTH];
CELL address[ADDRESSES];
CELL memory[IMAGE_SIZE + 1];
#define TOS data[sp]
#define NOS data[sp-1]
#define TORS address[rp]
#define NUM_DEVICES 1
typedef void (*Handler)(void);
Handler IO_deviceHandlers[NUM_DEVICES + 1];
Handler IO_queryHandlers[NUM_DEVICES + 1];
CELL ngaLoadImage(char *imageFile);
void ngaPrepare();
void ngaProcessOpcode(CELL opcode);
void ngaProcessPackedOpcodes(int opcode);
int ngaValidatePackedOpcodes(CELL opcode);
/* This assumes some knowledge of the ngaImage format for the
Retro language. If things change there, these will need to
be adjusted to match. */
#define TIB 1025
#define D_OFFSET_LINK 0
#define D_OFFSET_XT 1
#define D_OFFSET_CLASS 2
#define D_OFFSET_NAME 3
extern CELL Dictionary, Heap, Compiler;
extern CELL notfound;
CELL stack_pop();
void stack_push(CELL value);
int string_inject(char *str, int buffer);
char *string_extract(int at);
int d_link(CELL dt);
int d_xt(CELL dt);
int d_class(CELL dt);
int d_name(CELL dt);
int d_lookup(CELL Dictionary, char *name);
CELL d_xt_for(char *Name, CELL Dictionary);
CELL d_class_for(char *Name, CELL Dictionary);
void update_rx();
void execute(int cell);
void evaluate(char *s);
int not_eol(int ch);
void read_token(FILE *file, char *token_buffer, int echo);
char *read_token_str(char *s, char *token_buffer, int echo);
void generic_output() {
putc(stack_pop(), stdout);
fflush(stdout);
}
void generic_output_query() {
stack_push(0);
stack_push(0);
}
void dump_stack() {
CELL i;
if (sp == 0)
return;
printf("\nStack: ");
for (i = 1; i <= sp; i++) {
if (i == sp)
printf("[ TOS: %d ]", data[i]);
else
printf("%d ", data[i]);
}
printf("\n");
}
int include_file(char *fname) {
FILE *fp;
char source[64000];
int inBlock = 0;
int tokens = 0;
fp = fopen(fname, "r");
if (fp == NULL)
return 0;
while (!feof(fp))
{
read_token(fp, source, 0);
if (strcmp(source, "~~~") == 0) {
if (inBlock == 0)
inBlock = 1;
else
inBlock = 0;
} else {
if (inBlock == 1) {
evaluate(source);
putchar('.');
}
}
tokens++;
}
fclose(fp);
putchar('\n');
return tokens;
}
void extract_runtime(char *src) {
char buffer[4096];
snprintf(buffer, 4096, "objcopy -O binary --only-section=.runtime --set-section-flags .runtime=alloc %s a.out", src);
system(buffer);
}
void extract_image(char *src) {
char buffer[4096];
snprintf(buffer, 4096, "objcopy -O binary --only-section=.ngaImage --set-section-flags .ngaImage=alloc %s __ngaImage", src);
system(buffer);
}
void generate_turnkey(void) {
system("objcopy --add-section .ngaImage=__ngaImage --set-section-flags .ngaImage=noload,readonly a.out");
chmod("a.out", 493);
}
int validate_image(int tokens) {
if (tokens == 0) {
unlink("a.out");
printf("Error: no tokens in source file!\n");
return -1;
}
if (memory[1] == 0 || memory[1] == -1) {
unlink("a.out");
printf("Error: entry point not set!\n");
return -2;
}
return 0;
}
void setup() {
IO_deviceHandlers[0] = generic_output;
IO_queryHandlers[0] = generic_output_query;
}
void write_image() {
FILE *fp;
if ((fp = fopen("__ngaImage", "wb")) == NULL) {
printf("Unable to save the ngaImage!\n");
exit(2);
}
fwrite(&memory, sizeof(CELL), memory[3] + 1, fp);
fclose(fp);
}
void patch_entry(CELL a) {
memory[1] = a;
}
int main(int argc, char **argv) {
int tokens;
if (argc < 3) {
printf("Missing arguments\n");
exit(1);
}
ngaPrepare();
extract_runtime(argv[0]);
extract_image(argv[0]);
ngaLoadImage("__ngaImage");
tokens = include_file(argv[1]);
patch_entry(d_xt_for(argv[2], Dictionary));
write_image();
generate_turnkey();
unlink("__ngaImage");
printf("\nFinal image is %d cells\n", memory[3]);
return validate_image(tokens);
}
CELL Dictionary, Heap, Compiler;
CELL notfound;
/* Some I/O Parameters */
CELL stack_pop() {
sp--;
return data[sp + 1];
}
void stack_push(CELL value) {
sp++;
data[sp] = value;
}
int string_inject(char *str, int buffer) {
int m = strlen(str);
int i = 0;
while (m > 0) {
memory[buffer + i] = (CELL)str[i];
memory[buffer + i + 1] = 0;
m--; i++;
}
return buffer;
}
char string_data[8192];
char *string_extract(int at) {
CELL starting = at;
CELL i = 0;
while(memory[starting] && i < 8192)
string_data[i++] = (char)memory[starting++];
string_data[i] = 0;
return (char *)string_data;
}
int d_xt(CELL dt) {
return dt + D_OFFSET_XT;
}
int d_name(CELL dt) {
return dt + D_OFFSET_NAME;
}
int d_lookup(CELL Dictionary, char *name) {
CELL dt = 0;
CELL i = Dictionary;
char *dname;
while (memory[i] != 0 && i != 0) {
dname = string_extract(d_name(i));
if (strcmp(dname, name) == 0) {
dt = i;
i = 0;
} else {
i = memory[i];
}
}
return dt;
}
CELL d_xt_for(char *Name, CELL Dictionary) {
return memory[d_xt(d_lookup(Dictionary, Name))];
}
/* Retro needs to track a few variables. This function is
called as necessary to ensure that the interface stays
in sync with the image state. */
void update_rx() {
Dictionary = memory[2];
Heap = memory[3];
Compiler = d_xt_for("Compiler", Dictionary);
notfound = d_xt_for("err:notfound", Dictionary);
}
/* The `execute` function runs a word in the Retro image.
It also handles the additional I/O instructions. */
void execute(int cell) {
CELL opcode;
rp = 1;
ip = cell;
while (ip < IMAGE_SIZE) {
opcode = memory[ip];
if (ngaValidatePackedOpcodes(opcode) != 0) {
ngaProcessPackedOpcodes(opcode);
} else {
printf("Invalid instruction!\n");
exit(1);
}
ip++;
if (rp == 0)
ip = IMAGE_SIZE;
}
}
/* The `evaluate` function moves a token into the Retro
token buffer, then calls the Retro `interpret` word
to process it. */
void evaluate(char *s) {
CELL interpret;
if (strlen(s) == 0)
return;
update_rx();
interpret = d_xt_for("interpret", Dictionary);
string_inject(s, TIB);
stack_push(TIB);
execute(interpret);
}
/* `read_token` reads a token from the specified file.
It will stop on a whitespace or newline. It also
tries to handle backspaces, though the success of this
depends on how your terminal is configured. */
int not_eol(int ch) {
return (ch != (char)10) && (ch != (char)13) && (ch != (char)32) && (ch != EOF) && (ch != 0);
}
void read_token(FILE *file, char *token_buffer, int echo) {
int ch, count;
ch = getc(file);
count = 0;
while (not_eol(ch))
{
if ((ch == 8 || ch == 127) && count > 0)
count--;
else
token_buffer[count++] = ch;
ch = getc(file);
}
token_buffer[count] = '\0';
}
/* Nga ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Copyright (c) 2008 - 2018, Charles Childers
Copyright (c) 2009 - 2010, Luke Parrish
Copyright (c) 2010, Marc Simpson
Copyright (c) 2010, Jay Skeer
Copyright (c) 2011, Kenneth Keating
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ */
enum vm_opcode {
VM_NOP, VM_LIT, VM_DUP, VM_DROP, VM_SWAP, VM_PUSH, VM_POP,
VM_JUMP, VM_CALL, VM_CCALL, VM_RETURN, VM_EQ, VM_NEQ, VM_LT,
VM_GT, VM_FETCH, VM_STORE, VM_ADD, VM_SUB, VM_MUL, VM_DIVMOD,
VM_AND, VM_OR, VM_XOR, VM_SHIFT, VM_ZRET, VM_END, VM_IE,
VM_IQ, VM_II
};
#define NUM_OPS VM_II + 1
#ifndef NUM_DEVICES
#define NUM_DEVICES 0
#endif
CELL ngaLoadImage(char *imageFile) {
FILE *fp;
CELL imageSize;
long fileLen;
CELL i;
if ((fp = fopen(imageFile, "rb")) != NULL) {
/* Determine length (in cells) */
fseek(fp, 0, SEEK_END);
fileLen = ftell(fp) / sizeof(CELL);
rewind(fp);
/* Read the file into memory */
imageSize = fread(&memory, sizeof(CELL), fileLen, fp);
fclose(fp);
}
return imageSize;
}
void ngaPrepare() {
ip = sp = rp = 0;
for (ip = 0; ip < IMAGE_SIZE; ip++)
memory[ip] = VM_NOP;
for (ip = 0; ip < STACK_DEPTH; ip++)
data[ip] = 0;
for (ip = 0; ip < ADDRESSES; ip++)
address[ip] = 0;
}
void inst_nop() {
}
void inst_lit() {
sp++;
ip++;
TOS = memory[ip];
}
void inst_dup() {
sp++;
data[sp] = NOS;
}
void inst_drop() {
data[sp] = 0;
if (--sp < 0)
ip = IMAGE_SIZE;
}
void inst_swap() {
CELL a;
a = TOS;
TOS = NOS;
NOS = a;
}
void inst_push() {
rp++;
TORS = TOS;
inst_drop();
}
void inst_pop() {
sp++;
TOS = TORS;
rp--;
}
void inst_jump() {
ip = TOS - 1;
inst_drop();
}
void inst_call() {
rp++;
TORS = ip;
ip = TOS - 1;
inst_drop();
}
void inst_ccall() {
CELL a, b;
a = TOS; inst_drop(); /* False */
b = TOS; inst_drop(); /* Flag */
if (b != 0) {
rp++;
TORS = ip;
ip = a - 1;
}
}
void inst_return() {
ip = TORS;
rp--;
}
void inst_eq() {
NOS = (NOS == TOS) ? -1 : 0;
inst_drop();
}
void inst_neq() {
NOS = (NOS != TOS) ? -1 : 0;
inst_drop();
}
void inst_lt() {
NOS = (NOS < TOS) ? -1 : 0;
inst_drop();
}
void inst_gt() {
NOS = (NOS > TOS) ? -1 : 0;
inst_drop();
}
void inst_fetch() {
switch (TOS) {
case -1: TOS = sp - 1; break;
case -2: TOS = rp; break;
case -3: TOS = IMAGE_SIZE; break;
case -4: TOS = CELL_MIN; break;
case -5: TOS = CELL_MAX; break;
default: TOS = memory[TOS]; break;
}
}
void inst_store() {
if (TOS <= IMAGE_SIZE && TOS >= 0) {
memory[TOS] = NOS;
inst_drop();
inst_drop();
} else {
ip = IMAGE_SIZE;
}
}
void inst_add() {
NOS += TOS;
inst_drop();
}
void inst_sub() {
NOS -= TOS;
inst_drop();
}
void inst_mul() {
NOS *= TOS;
inst_drop();
}
void inst_divmod() {
CELL a, b;
a = TOS;
b = NOS;
TOS = b / a;
NOS = b % a;
}
void inst_and() {
NOS = TOS & NOS;
inst_drop();
}
void inst_or() {
NOS = TOS | NOS;
inst_drop();
}
void inst_xor() {
NOS = TOS ^ NOS;
inst_drop();
}
void inst_shift() {
CELL y = TOS;
CELL x = NOS;
if (TOS < 0)
NOS = NOS << (TOS * -1);
else {
if (x < 0 && y > 0)
NOS = x >> y | ~(~0U >> y);
else
NOS = x >> y;
}
inst_drop();
}
void inst_zret() {
if (TOS == 0) {
inst_drop();
ip = TORS;
rp--;
}
}
void inst_end() {
ip = IMAGE_SIZE;
}
void inst_ie() {
sp++;
TOS = NUM_DEVICES;
}
void inst_iq() {
CELL Device = TOS;
inst_drop();
IO_queryHandlers[Device]();
}
void inst_ii() {
CELL Device = TOS;
inst_drop();
IO_deviceHandlers[Device]();
}
Handler instructions[NUM_OPS] = {
inst_nop, inst_lit, inst_dup, inst_drop, inst_swap, inst_push, inst_pop,
inst_jump, inst_call, inst_ccall, inst_return, inst_eq, inst_neq, inst_lt,
inst_gt, inst_fetch, inst_store, inst_add, inst_sub, inst_mul, inst_divmod,
inst_and, inst_or, inst_xor, inst_shift, inst_zret, inst_end, inst_ie,
inst_iq, inst_ii
};
void ngaProcessOpcode(CELL opcode) {
if (opcode != 0)
instructions[opcode]();
}
int ngaValidatePackedOpcodes(CELL opcode) {
CELL raw = opcode;
CELL current;
int valid = -1;
int i;
for (i = 0; i < 4; i++) {
current = raw & 0xFF;
if (!(current >= 0 && current <= 29))
valid = 0;
raw = raw >> 8;
}
return valid;
}
void ngaProcessPackedOpcodes(CELL opcode) {
CELL raw = opcode;
int i;
for (i = 0; i < 4; i++) {
ngaProcessOpcode(raw & 0xFF);
raw = raw >> 8;
}
}