115 lines
2.9 KiB
Text
115 lines
2.9 KiB
Text
|
\ elip Complete Elliptic Integral ACM Algorithm #149
|
||
|
|
||
|
\ Forth Scientific Library Algorithm #2
|
||
|
|
||
|
\ Evaluates the Complete Elliptic Integral,
|
||
|
\ Elip[a, b] = int_0^{\pi/2} 1/Sqrt{a^2 cos^2(t) + b^2 sin^2(t)} dt
|
||
|
|
||
|
\ This function can be used to evaluate the complete elliptic integral
|
||
|
\ of the first kind, by using the relation K[m] = a Elip[a,b], m = 1 - b^2/a^2
|
||
|
|
||
|
\ This code conforms with ANS requiring:
|
||
|
\ 1. The Floating-Point word set
|
||
|
\ 2. The immediate word '%' which takes the next token
|
||
|
\ and converts it to a floating-point literal
|
||
|
\ 3. The FCONSTANT PI (3.1415926536...)
|
||
|
\
|
||
|
\ Both a recursive form and an iterative form are given, but because of the
|
||
|
\ large stack consumption the recursive form is probably not of much
|
||
|
\ practical use.
|
||
|
|
||
|
\ Caution: this code can potentially go into an endless loop
|
||
|
\ for certain values of the parameters.
|
||
|
|
||
|
\ Collected Algorithms from ACM, Volume 1 Algorithms 1-220,
|
||
|
\ 1980; Association for Computing Machinery Inc., New York,
|
||
|
\ ISBN 0-89791-017-6
|
||
|
|
||
|
\ (c) Copyright 1994 Everett F. Carter. Permission is granted by the
|
||
|
\ author to use this software for any application provided the
|
||
|
\ copyright notice is preserved.
|
||
|
|
||
|
CR .( ELIP V1.2 21 September 1994 EFC )
|
||
|
|
||
|
|
||
|
: elip1 ( --, f: a b -- elip[a,b] ) \ recursive form
|
||
|
|
||
|
FOVER FOVER FOVER F- FABS
|
||
|
FSWAP % 1.0e-8 F*
|
||
|
F< IF
|
||
|
FDROP
|
||
|
pi % 2.0 F/ FSWAP F/
|
||
|
ELSE
|
||
|
FOVER FOVER F+ % 2.0 F/
|
||
|
FROT FROT F* FSQRT
|
||
|
RECURSE
|
||
|
THEN
|
||
|
;
|
||
|
|
||
|
: elip2 ( --, f: a b -- elip[a,b] ) \ nonrecursive version
|
||
|
|
||
|
BEGIN
|
||
|
FOVER FOVER F+ % 2.0 F/
|
||
|
FROT FROT F* FSQRT
|
||
|
|
||
|
FOVER FOVER FOVER F- FABS
|
||
|
FSWAP % 1.0e-8 F*
|
||
|
F< UNTIL
|
||
|
|
||
|
FDROP
|
||
|
|
||
|
pi % 2.0 F/ FSWAP F/
|
||
|
|
||
|
;
|
||
|
|
||
|
|
||
|
\ test driver, calculates the complete elliptic integral of the first
|
||
|
\ kind (K(m)) using the relation: K[m] = a Elip[a,b], m = 1 - b^2/a^2
|
||
|
\ compare with Abramowitz & Stegun, Handbook of Mathematical Functions,
|
||
|
\ Table 17.1
|
||
|
|
||
|
: elip_test ( -- )
|
||
|
CR
|
||
|
." m K(m) exact a Elip1[a,b] a Elip2[a,b] " CR
|
||
|
|
||
|
." 0.0 1.57079633 "
|
||
|
% 1000.0 % 1000.0 elip1 % 1000.0 F* F. ." "
|
||
|
% 1000.0 % 1000.0 elip2 % 1000.0 F* F. CR
|
||
|
|
||
|
." 0.44 1.80632756 "
|
||
|
% 400.0 % 299.33259 elip1 % 400.0 F* F. ." "
|
||
|
% 400.0 % 299.33259 elip2 % 400.0 F* F. CR
|
||
|
|
||
|
." 0.75 2.15651565 "
|
||
|
% 1000.0 % 500.0 elip1 % 1000.0 F* F. ." "
|
||
|
% 1000.0 % 500.0 elip2 % 1000.0 F* F. CR
|
||
|
|
||
|
." 0.96 3.01611249 "
|
||
|
% 500.0 % 100.0 elip1 % 500.0 F* F. ." "
|
||
|
% 500.0 % 100.0 elip2 % 500.0 F* F. CR
|
||
|
|
||
|
|
||
|
;
|
||
|
|
||
|
# The Code
|
||
|
|
||
|
~~~
|
||
|
:elip1 (-,f:ab-elip[a,b])
|
||
|
f:over f:over f:over f:- f:abs
|
||
|
f:swap .1.0e-8 f:*
|
||
|
f:lt? [ f:drop
|
||
|
f:PI .2.0 f:/ f:swap f:/
|
||
|
]
|
||
|
[ f:over f:over f:+ .2.0 f:/
|
||
|
f:rot f:rot f:* f:sqrt
|
||
|
elip1
|
||
|
] choose
|
||
|
;
|
||
|
~~~
|
||
|
|
||
|
# Test
|
||
|
|
||
|
```
|
||
|
.1000 .1000 elip1 .1000 f:* f:put nl
|
||
|
```
|